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Abstract

Rising energy costs, the shrinking size of mobile devices and political influences 
have begun to force device and software developers to look at ways in which they 
can reduce their energy usage. While most energy savings models can be found in 
how hardware is designed, software plays a key role in how devices can be more 
energy efficient because software is what ultimately controls the hardware it runs 
on. At the same time a careful balance between performance and energy savings 
must be maintained. In order to examine this balance, researchers have begun to put 
forth energy models and metrics that rely on dynamic voltage and frequency scaling 
to optimize performance and energy usage. The problem with these models and 
measurements being that while most software is ran on devices capable of changing 
their processor frequency and voltage, most developers do not have the ability to 
change these settings due to the operating system safety and security restrictions. We 
present an alternative energy ratio that uses the work and idle times of the processor 
to examine energy efficiency gain by parallelization of software systems. Using this 
ratio we show how software developers can examine their parallelization efforts and 
decide not only which method will provide them with the performance they seek while 
not sacrificing energy usage, but also when it is expedient to reduce the amount of 
processors used by their application. The model is evaluated through a number of 
scheduling algorithms and case studies. 

INTRODUCTION
In 1965, Moore made a series of predictions that have 

since become part of the standard for which improvements 
in computing performance and costs are judged. The basis of 
Moore’s Law is that both the number and the density of transistors 
on inexpensive integrated circuits would double approximately 
every two years [1]. This increase has allowed integrated circuit 
designers to increase performance of their chips and reduce their 
cost as well. The reduction in size and cost of integrated circuits 
and the devices that utilize them has provided the means with 
which computer devices have been integrated into everyday life. 
Computer devices, such as modern smart cellphones, come in 
packages many orders of magnitudes smaller and are significantly 
cheaper. It is now possible to purchase fully functional computers 
for less than the cost of a tank of gas [2].Transistor sizes have 
continued to decrease to the point where significant performance 
gains can no longer be achieved by a simple reduction in size. This 
has forced chip designers to look for other ways to improve their 
devices. Data caching, pipelining, and instruction set reductions 
are a few of the ways that processor designers have used to 
increase performance without having to rely on reducing the size 
of the transistors used. 

Recently, CPU designers have turned towards building multi-
processor CPUs. While multi-processor systems are nothing 
new, packaging multiple processors on a single chip is a fairly 
recent advancement.  Not only have CPU designers put multiple 
processors on a single chip, they have arranged the data caches in 
such a way that communication between the processors has also 
improved. By and large, these types of improvements have been 
the basis by which Moore’s law continues to hold true.

Much like how decreases in cost and size made computing 
devices readily available, so has the inclusion of multiple 
processors on a CPU expanded the reach of multiprocessor 
software development. The average developer now has the 
ability to write truly parallel applications and take advantage of 
the additional throughput this provides.

Rising energy costs

Over the past few decades, several forces have collided 
to demand a reduction in the energy demands of our devices. 
This runs counter to what has happened as a consequence of 
the increased performance gained by increasing the transistor 
density of the integrated circuits these devices depend on. By 
increasing the transistor density of integrated circuits, we have 
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also increased the amount of energy they require. The increase in 
energy demands due to density increases has begun to outpace 
the energy reduction provided by smaller transistors. While 
today’s processors have far greater processing power than those 
of just a few years ago, they also require much more energy.

One of the forces that continually influence decisions, no 
matter what is being decided, is cost. Lately, the cost of the energy 
required to run computer devices has begun to be a concern. 
Both the cost of producing energy and the demand for energy 
have risen sharply over the past few years [3]. This has caused 
energy prices to become a major factor in the operating expenses 
for any decent sized computer network. 

In 2011, Google disclosed that it uses an estimated 260 million 
watts of electricity continually [4]. This is roughly the same 
amount of energy that 200 thousand home use, which runs about 
$1,500 per household [5]. In other words, Google’s computational 
energy costs were over $250 million in 2011. While Google made 
$38 billion in 2011, this still represents a significant amount of 
money spent on a single expense [6].

Political influence

While costs have a major impact on all industries, politics can 
have the same level influence as well. The past few decades have 
seen the rise in the political demand for resource conservation 
and sustainability. What is being called the green movement has 
begun to impact the IT industry as well in the form of “green 
computing.”

Green computing works towards the goal of having 
computing resources with little to no impact on the environment 
[7]. The basic objectives of green computing are the same as 
the general green movement: those of reducing environmental 
impact of production and disposal of computers, an increase 
in recyclability of afterlife devices and waste, and reduction in 
computational energy usage. The last objective is the only one 
that most IT professionals have any real direct influence over and 
usually the most focused on.

In 1992, the US Environmental Protection Agency launched 
the Energy Star Program. This program’s goals were to encourage 
companies to improve either their own energy consumption or 
that of their products [8]. Other governments have introduced 
similar initiatives or have adopted the Energy Star program as 
well. The primary way by which the Energy Star program achieves 
its goal in energy usage reduction is by certifying appliances as 
either using only the minimal amount of energy necessary or 
including methods that work towards reducing its overall energy 
usage. Energy Star estimates that their certification program 
helped Americans save over $20 billion in 2010 [9]. When Google 
disclosed how much energy their data centers were using, they 
also used that as an opportunity to discuss the ways in which 
they were trying to become greener [4]. Some of Google’s green 
initiatives include an expansion in its usage of renewable energy 
sources and designing data centers that both run hotter than 
normal and use natural methods for temperature control.

As part of getting computers certified by the Energy Star 
program, hardware designers introduced the Advanced Control 
Power Interface (ACPI) industrial standard for reducing power 

consumption of idle computer components [10]. The basic 
concept for a device that is ACPI compliant is that as it remains 
idle it moves from a higher energy using power state to one with 
a lower energy usage. For processors, this usually means that 
each processor has at least two power states: an operational state 
and a stop or halted state.  

Smart grid and energy optimization

Between 2000 and 2001 California experienced what has 
since been referred to as the California Energy Crisis [11]. While 
there were several influencing factors, the basic problem was 
that energy demands in California were allowed to outstrip the 
energy that was being supplied. The ultimate result was that over 
1.5 million energy customers were affected by rolling blackouts, 
sometimes in the heat of summer. Investigation into the causes 
identified illegal market manipulations as the primary cause of 
the energy shortage, but the wide spread blackouts would have 
been lessened had the power grid been better able to handle the 
demands placed on it.

Events like the California energy crisis, coupled with rising 
energy costs and pressure for sustainability in our energy 
production has placed a greater emphasis on how our energy 
grids are managed. The key to this management is to making 
sure that energy production meets the demands. Unfortunately, 
energy usage demands and production methods are far from 
constant. For example, solar energy plants will produce more 
energy during bright sunny days than at night or on cloudy days. 
At the same time, the energy usage patterns of the different energy 
customers follow similar daily and seasonal patterns. Smart grids, 
or power grids that utilize computers and information gathering 
technology to manage how the energy is propagated across the 
grid, are being looked at as a means of optimizing the power grid 
along the lines of these energy usage and production patterns 
and reduce the likelihood that future energy crises occur.

Smart grid technology seeks to finds ways to improve the 
power grid by incorporating information technology into the 
various parts of the grid [12]. Currently, information technology 
is only deployed locally in the power grid as a measure of safety 
to protect power assets from overloading and failure. Smart 
grid proponents and policy makers seek to further increase 
the amount of information that is gathered and analyzed by 
computers deployed within the grid. These individuals hope that 
by turning the management of the power grid over to computers 
that not only will power management be increased but that the 
grid will also be more resilient to failure by giving it the ability to 
self-heal when a failure in one or more components occurs.

The ultimate goal of building a smart grid is finding ways 
in which power demands can be met using the most optimal 
methods, hopefully utilizing renewable or sustainable sources. 
By using smart grid technology, power grid managers have the 
ability to fully utilize excess energy that is produced cheaply, 
like that from a solar power plant at peak times, even if the peak 
production time does not match peak demand times by either 
shuffling the energy around to where it is needed or storing it 
off for later use. While this is possible without the use of a smart 
grid, smart grids make it much more affordable by being able to 
predict when it is more efficient to store excess energy or shuffle 
it across long distances.
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Mobile energy demands

The decreasing size of circuits has given rise to a new type of 
energy management problem in form of mobile computing. What 
started as easy to setup portable computers now encompasses a 
variety of devices, including laptops, mobile phones, and tablet 
computers. Each of these devices utilizes some sort of battery 
to meet its on-the-go energy demands. To keep the total cost of 
these devices to a minimum, these devices almost always include 
a rechargeable battery.

In order to increase the mobility of their devices, developers 
strive to increase the amount of time a device will be able to 
operate between recharges or battery replacements. Regardless 
of whether the battery is rechargeable or not, the batteries in 
mobile devices only provide a finite amount of energy. This means 
that there are two different ways by which a device can increase 
its mobility: increase the capacity of the battery or decrease the 
energy demands of the device itself.

As current battery technology is limited in what it can do 
to increase the capabilities of the batteries powering mobile 
devices, the focus of mobile device development has shifted to 
minimizing the energy demands of mobile devices. Also, mobile 
devices have decreased in size, which places a severe limitation 
on the size of the battery included. For this reason, mobile devices 
usually do not use the same hardware as their desktop and server 
siblings. Instead, they use processors that are designed to both 
use less energy and generate less heat. In most cases, the tradeoff 
of performance for mobility is acceptable.

Software’s impact on energy 

While the largest amount of energy can be saved by improving 
computer hardware, software can also play a significant role [13]. 
The most basic way in which software affects energy consumption 
of a computer is in how the software utilizes and controls the 
hardware it has available. In other words, how an operating 
system manages the energy states of each of the devices can play 
have a major effect on how much energy a device use.

Early in 2011, the Linux foundation released the 2.6.38 
version of the Linux kernel. Shortly after that, Tom’s Hardware 
did a review of the latest Ubuntu release to that used the 2.6.38 
kernel and found that the battery life for their testing rig dropped 
by almost 50%, confirming an early report of a possible problem 
with the kernel’s power management [14]. 

The problem was found to be in the Active-State Power 
Management (ASPM) for PCI Express [15]. What happened was 
there is an issue certain BIOSes that have their ASPM support 
miss-configured, and this can cause various problems if the power 
mode is dropped on unsupported devices. To work around this 
issue, ASPM for the PCI express was disabled and its state cleared 
when it appeared that ASPM was not supported. The maintainers 
for the PCIe driver found that the proper solution was to only 
clear the ASPM state only when the BIOS handed control over to 
the operating system [16].

What this illustrates is that because hardware is ultimately 
controlled by the software ran on it, software still plays a major 
part in how much energy devices use. This means that ultimately 
software developers must pay close attention to how they write 

their software if they don’t wish to negatively impact the power 
usages of the devices it runs on.

The structure of the paper

• In this paper we present an energy efficiency ratio for 
multiprocess applications that relies on CPU idle and 
work times. We derived this model from the power 
usage of a CPU and Amdahl’s law [17] and show how 
it can be used to determine if a multiprocess solution 
to a problem will provide the desired energy savings. 
We then use this ratio to examine the energy efficiency 
of different applications and task schedulers, and then 
use this information to make arguments for which task 
scheduling method to use and the number of processors 
our application can be parallelized across. This paper’s 
contributions are:Introduce a speedup ratio that relates 
CPU utilization with energy usage.

• Use this model to examine the energy efficiency of two 
different applications and several task schedulers.

• Examine how this ratio combined with Amdahl’s law can 
be used to determine the optimal number of processors 
for a parallel application to use.

The rest of this paper is organized as follows: Section 2 
reviews other models and energy saving techniques. Section 
3 examines how software engineering can affect energy usage. 
Section 4 looks at task scheduling and how it is used to save 
energy in parallel applications. In section 5 we introduce our 
energy efficiency ratio. Section 6 is where we examine our case 
studies and apply the ratio. And section 7 presents our conclusion.

RELATED WORK
Software development researchers have recently begun 

turning toward looking at how software can be written with 
energy conservation in mind. The goal these researchers 
are looking for is to predict the energy usage of differing 
parallelization methods and choose the one that will meet the 
performance demands while minimizing energy usage. The 
basic idea is to slow the processors down during idle times or 
when there is more time than necessary to complete a given task 
[17]. Multithreaded task schedulers use this method of reducing 
the frequency of the processors when tasks have more time to 
execute than they need [18,19]. By using dynamic voltage these 
schedulers can manipulate how they schedule their tasks to 
minimize application energy usage.

Being able to accurately model energy usage is of extreme 
importance. Rountree et al. [20] pointed out that reducing 10% of 
the processors in a cluster by 50% or more would net an energy 
savings of over 5%, but only if this reduction did not delay critical 
tasks. If the system is forced to remain active due to these critical 
tasks by an additional 1%, then the system will actually use more 
energy than it would have if it had not reduced the processors 
operating frequency [20]. One of the key focuses of this line of 
research has been the development of software energy usage 
models and comparison ratios. These models’ and ratios’ goals 
are to give software developers the information they need in 
order to develop energy conscious software.
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Ge and Cameron define an energy model that relies on the 
operating frequency of the processors [21]. This model allows 
developers to estimate the energy performance of a parallel 
application running at different frequencies. Ge et al. went on 
to use this model in developing a runtime power management 
system for high performance computing clusters, aimed at using 
dynamic voltage and frequency scaling to minimize a cluster’s 
energy usage [22]. By utilizing this power management system, 
Ge et al. were able to achieve over 20% energy savings for the 
NAS parallel benchmarks.

Like Ge and Cameron, other researchers have applied energy 
modeling to Amdahl’s law in order to get a good idea on how well 
an application’s parallelization will save energy. Song et al. [23] 
developed a model based on a large range of different parameters 
that all have an effect on the amount of energy a computer system 
uses. They look at such things as what part of the workload takes 
place in the CPU versus memory reads/writes, parallelization 
overhead, and the various operating parameters of the device. 
Using these values, Song et al were able to estimate the iso-energy-
efficiency of an application and provide application developers 
with a way to fine-tune the performance of their applications for 
energy conservation with only negligible performance loss [23].

Rountree et al decided to forgo simply modeling an 
application’s energy by indirect methods, and instead proposed 
a framework whereby they were able to measure the workloads 
on and off the CPU [20]. This framework inserts memory load 
markers into the data caches, which indicate when a processor 
is waiting on a memory read or write. Using these markers this 
framework is able to determine when a processor’s frequency 
can be reduced, thereby saving energy. Rountree et al used this 
approach to reduce the median absolute error by an order of 
magnitude.

The problem with most of these methods for both modeling 
and reducing energy usage is that they rely on things outside the 
reach of most software developers. While these methods are great 
for operating system, compiler and even hardware developers, 
software developers will rarely be able to make much use out of 
these methods due to either their complexity [23], their reliance 
on setting inaccessible to user level applications [21], or the 
need to add operating system or hardware monitoring methods 
[20]. Instead, software developers need models that contain 
information they have easy access to and can actively affect, such 
as CPU idle time. 

ENERGY-CONSCIOUS SOFTWARE ENGINEERING
The combination of rising energy cost, increased mobile 

devices, and political influences has caused there to be a greater 
concentration on ways to reduce the energy demands of our 
computers and related devices. Most research and development 
into computer energy usage focuses on how to decrease the 
energy demands of computer hardware. There are many different 
parts of a computer that require their own energy conscious 
design, providing hardware developers plenty of things to look 
at.

As illustrated by the power issues that the Linux kernel 
recently experienced [14], software can play a major role in how 
much energy a device uses. Computer science research has begun 

to start looking into improving software engineering practices 
so that it not only focuses on application performance, but also 
energy usage as well.

Intel’s response to green computing has been to release 
processors that are more energy conscious. A book published 
by Intel, Energy Aware Computing, helps software developers 
make their software more energy efficient [24]. In advance of 
the book, the authors have released a few papers covering some 
of its material. The key focus of what the authors present is 
minimizing what software is doing while the system is idle [25] 
and maximizing the time the computer can sit in an idle state [26]. 
For the later, they offer the basic suggestions of simply improving 
the overall performance of the software that gets written. Their 
suggestions reap the most fruit when applied during the design 
phase, since it focuses on picking the most optimum algorithms 
and data structures for the given tasks. Their reasoning is that 
if a computer is able to finish its work quickly, then it will be 
able to return to a lower power state sooner and begin saving 
energy. They call this the “race to idle”. Due to the race to idle, 
programmers can greatly decrease the energy consumption of 
the devices their programs run on by simply optimizing their 
algorithms.

Effects of nested loops

The loops within an application offer a good straightforward 
area of optimization because by improving the tasks within a 
loop by a small amount, that small amount is multiplied by the 
number of iterations the loop goes through. The easiest way to 
improve the execution of a loop is by making sure that if there are 
data accesses within that they are in the same order as the data is 
stored in memory. Figure 1 shows the standard arrangement of 
the elements in a two dimensional array. If each row  is followed 
immediately by the next row, i+1 , then i is the major index and j 
is the minor index. When iterating across this multi-dimensional 
array, the outer most loop should iterate across the most major 
index, i. Then the next nested loop should be for the next most 
major index until the inner most loop is iterating across the most 
minor index. For this two dimensional array the inner loop’s 
index would be j. Arranging loop iterations so that memory 
accesses are sequential has a high chance of improving cache hits, 
which reduces both the energy expended in the memory accesses 
and the time it takes for each of those accesses [27].

Memory access vs. data caches

 Memory and data caches are one of the improvements 
to hardware that has greatly increased performance without 
increasing clock speed. A successful cache hit can greatly reduce 
the amount of time a processor has to wait for a piece of data 

Figure 1 Two dimensional array arrangement.
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to be available. A great way to improve performance is to limit 
how much memory an application needs at any given time to how 
much will fit in the CPU cache. By keeping the immediate memory 
needs of an application small enough to fit within the CPU cache, 
a software developer can insure that cache hits will rarely miss. 
If the memory needs of an application will not fit within the CPU 
cache, then another option is to focus the work being done on 
blocks that will and only moving on to the next block when all 
operations that can be completed on the current block have 
finished [28].

Effects of multithreading

With the advent of readily available and inexpensive 
multiprocessor system, a new avenue has opened up for the 
average software developer to improve the performance of their 
applications: multithreading. Multithreaded applications give 
developers the potential ability to decrease the amount of time it 
takes for an application to perform any given task. Additionally, 
multithreaded applications can provide a means of keeping the 
CPU busy when it has to wait on either devices or memory loads, 
which in turns helps improve an applications performance.

The first major availability of multiple processors came in the 
form of Intel’s hyper threading technology. Essentially, this is a 
hardware trick where the processor reports double the number of 
actual computational units. A hyper threaded CPU is able to do this 
because it has doubled the number of state registers, allowing it to 
maintain the state of different execution threads simultaneously. 
By doing this, the CPU is able to be continuously executing tasks 
even when a non-hyper threaded CPU would stall do to a cache 
miss or some other wait operation [29]. Multithreading can have 
a massive effect on the runtime of an application. Even on a single 
processor, by adding additional thread software developers can 
still increase the performance of their applications since the 
processor will be kept busy. Multithreading has the potential 
to greatly improve the performance of an application, but only 
if care is given as a single mistake can be much more costly 
in a multithreaded application than in a sequential one. For 
example, mistakes in thread synchronization can cause dead 
locks or unintended delays which can add up to the point where 
a multithreaded application’s performance is worse than its 
sequential equivalent.

As an example, in a recent exercise in application 
parallelization, we took a finite difference solver used as a way to 
model the propagation of an acoustic wave through a stochastic 
velocity model, in order to generate synthetic seismic data 
[30,31,32]. From the equation for the acoustic wave modeling, 
each cell is dependent on its past two values, as well as the most 
previous value of the two cells above, below, to the left, and to the 
right. Figure 2 shows an example of the dependencies that exist 
in calculating each cell. The core of the calculations took place in 
a simple sequential matrix data processing loop, itself in another 
loop so that the matrix could be recalculated for each time slice of 
the wave propagation.

The original application was written in MatLab, but for this 
exercise we decided to write it in C++ in order to gain direct 
access to the threading methods. Due to the nature of the 
dependencies across each time slice, only the matrix processing 

loops were parallelized. A simple block tiling method was used to 
cut the matrix up into equal blocks for each thread to work with.

Two different threading approaches were used in the final 
application. The first method started and stopped of each thread 
after it was done working for the current time slice. The other 
method only created the threads once, but used barriers to 
synchronize the threads with which time slice they should be 
working on. The application was run with between 1 and 32 
threads on a system with a quad-core processor.

Figure 3 shows the execution times with the varying number 
of threads. A couple of noteworthy things can be seen in Figure 3. 
First, there is an immediate decrease in the execution time with 
only a few threads, and that adding more threads after a certain 
point does not continue the downward trend. This brings up the 
second interesting point: using the barriers to keep the threads 
synchronized ads enough overhead that after a certain number of 
threads the application actually performs worse than just running 
it with one thread. This is in contrast to starting and stopping the 
threads after each time slice where the performance usually gets 
slightly better with each thread added. Looking at Figure 3 and 
using the “race to idle” argument, we can make the assumption 
that the method of starting and stopping the threads will be more 
energy efficient. Additionally, we can assume that trying to use 
more than 6 or 7 threads will only decrease our energy efficiency, 
since the performance gains taper off after that point. 

When there are more threads than there are available 
processors the system must swap the threads across those 
processors. This causes the barrier method performs worse than 

Figure 2 Finite difference solver cell dependencies.

Figure 3 Finite difference approximator execution time by thread 
count.
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the start and stop method due to context switching, cache misses, 
and synchronization costs. All of these things add up to severely 
decrease the performance of the barrier method. 

On the other hand, the start and stop method does not have 
the context switching issue due to the fact that by the time each 
of the later threads are started, the first few have completed, 
thereby keeping the number of executing threads low enough to 
keep context switching to a minimum. Also, at a certain point the 
block that each thread works on gets small enough to fit within 
the processor cache. When all the data that a processor needs to 
complete a task is available in its cache, the processor’s prefetch 
will be able to fill the cache with this data and the processor 
will have this data available there for the duration of the task’s 
execution [28]. 

Adding additional threads to an application does not 
necessarily guarantee better performance. Instead, the only 
guarantee given by additional threads is an increase in complexity.  
In fact, if proper care is not given, application performance can 
actually degrade beyond usability due to threading complications 
such as resource locking and task scheduling.

POWER EFFICIENT TASK SCHEDULING
Researchers look for ways in which applications and tasks 

can be scheduled to both optimize their performance and energy 
usage. We look now at one of the ways in which tasks can be 
scheduled for both performance and energy conservation.

The job shop problem

One of the fundamental problems in developing efficient 
multiprocess applications is known as the job shop scheduling 
problem [33].  Graham described this problem as having a set 
of tasks { }1 mT T , ,T= … that are to executed uninterruptedly 
on n identical processing units Pi [33]. In addition, there exists 
a partial-order p on T that states if i jT Tp  then Tj cannot start 
until Ti completes and a function of time ì : T [0, )∞→  The 
order in which the tasks are executed given by a linear ordering 

( )1
: , ,…

mk kL T T of T, called a task or priority list. Efficient task lists 
are the ones that minimize the makespan, or total time it takes to 
execute all the tasks.

Graham further demonstrated that the tasks, their partial 
ordering p on T and the function µ could be represented by a 
directed graph  ( ),µpG . He set ( ),µpG such that the vertices 
corresponded to the tasks, Ti and the directed edges from Ti  
to Tj would indicate that pi jT T . Finally, Graham weighted 
the vertices of the graph, where the weight of each vertex is 
the length of time each task takes to execute. From this setup, 
application developers and researchers have been able to devise 
various priority lists, or schedules, by applying graph routing 
techniques [34].

Cyclic and acyclic task graphs 

There are two different ways that tasks can be modeled using 
task graphs. The first is when each vertex represents a single 
task that executes only once [34]. This scenario produces an 
acyclic graph. The second way is to have each vertex represent 
a generic task that is executed infinitely often. This special 
case of the job scheduling problem is known as the basic cyclic 

scheduling problem and is “the most elementary formulation for 
studying repetitive applications,” and is referred to as a “reduced 
dependency graph” [34]. This reduced dependence graph is 
denoted by G=(V,E), where V is the list of generic tasks, and E is 
the edges between the vertices which represent the partial-order 
dependencies. From this, researchers labeled each operation by a 
pair of indices ( ){ }, | ,0∈ ≤ <v k v V k N , where N is the number of 
executions each task will undergo.

Researchers have further expanded the reduced dependence 
graph by weighting the edges, creating a weighted directed 
graph, denoted by G=(V,E,d,w), where the function *: →d V N is 
the duration of each task, and the function : →w E N gives the 
dependence distance of each edge. The edge weight function, 
w, states that for any edge ( ),= ∈e u v E , and for any k such that

( )0 ≥ < −k N w e , the operation ( )( ), +v k w e cannot start before 
the operation (u,k). For example, in Figure 4 the duration of task 
A, d(A) is 4 and the edge between it and task B has an edge weight, 

( )A Bw e → , of 3.

As stated earlier, efficient schedules are ones that minimize 
their makespan. Scheduling problems solved by using an acyclical 
graph look at the total makespan of the schedule, considering 
each execution of each task. If there is a loop within the 
application, then the schedule is highly dependent on the number 
of iterations, N, within the loop. This means that a schedule is a 
function  :σ × →V N N that respects the dependence constraints:

( ) ( )( ) ( ) ( ), , 0, , ,σ σ∀ = ∈ ∀ ≥ + ≥ +e u v E k v k w e u k d u

By using a reduced dependence graph when trying to 
schedule the tasks within a loop, researchers have been able to 
create schedule for any value of N. For these types of schedules, 
researchers measure the efficiency not by looking that the total 
makespan for the schedule, but by the average cycle time, λ, 
which is defined by [34]. 

( ) ( ){ }
N

max v,k d v | v V,0 k
liminf

N∞→

σ + ∈ ≤ <
λ =

N

Additional complexities arise when the reduced dependency 
graphs exhibit cyclic patterns. When there exist cyclic patterns 
within a graph, tasks end up depending on themselves. These 
graphs produce cyclic schedules, which is a schedule such that 

( ),σ λ= +vv k c k for some  ∈vc N and  λ ∈N . The schedule σ is 
a periodic schedule that schedules slices of the overall schedule 
with period λ units of time. Within each slice, only one instance of 
each generic task is executed.

Schedules can be produced from reduced dependence graphs 
by using two different methods. The first method schedules the 

Figure 4 Weighted directed graph  [34].
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body of the loop without mixing up its iterations. The general 
idea is to remove the inter-iteration dependencies, or those edges 
with non-zero weight, ( ) 0≠w e , and then simply use acyclical 
scheduling method. From here the scheduler can then calculate 
the makespan of ( ) ( )( ):σ λ σ∈= +a v V amax v d v and the cyclic 
schedule σ by:

( ) ( ), , ,σ σ λ∀ ∈ ∀ ∈ = +aüüü N

The other method mixes up the iterations of the loop in such 
a way that the dependencies are still kept but minimized the 
average makespan. If given an unlimited number of resources, 
then the minimum makespan for a cyclic schedule is the 

maximum cyclic duration to distance ratio, ( ) ( )
( )

 ñ =
d C

C
w C

where 
C is any cycle in G [35].

Potential graphs

When there exists a cycle within a task graph, it introduces 
additional complexities that scheduling algorithms must deal 
with. By disregarding the edges of G where ( ) 0≠w e , which 
removes the inter-iteration dependencies, developers are then 
able to use acyclical scheduling algorithms within the body of the 
loop.  Schedulers can also take the reduced dependency graph 
and transform it into a “potential graph.”  A potential graph 

( ), ,=G V E w is a task graph where : →w E Z defines the edge 
weights and the schedule σ for G is a function :σ →V N such 
that all potential inequalities are satisfied:

( ) ( ) ( ) ( )e u,v E, u w v∀ = ∈ σ + ≤ σe

A potential graph primarily differs from a reduced 
dependency graph in that it contains a source task s. The source 
task has a start time σ (s)=0 and duration d (s)=0. The source task 
is essentially a jumping off or starting point for the scheduling 
algorithm.

Using the source task, scheduler algorithms map the potential 
inequalities in the reduced dependency task graph to a potential 
graph. These scheduling algorithms first re-introduce all of the 
original dependencies as edges e where if v depends on µ the 
edg e=(u,v) but set the weight w(e)=p(u). These edges provide 
the inequality: σ (u) +p (u) ≤ σ (v). The dependency edges for the 
ready time r(v)of the tasks, or the time that the task has to wait 
before it is able to start, are added by the algorithm next. The 
algorithm assigns this edge, e=(s,v) the weight w(e)= r(v)and in 
return, it provides this inequality: σ (s) +r(v) ≤ σ (v), and since σ 
(s) = 0 this satisfies the constraint that r(v) ≤ σ (v). The final set of 
dependency edges the algorithm adds are for the due time, d(v), 
which is the time that the tasks much be executed before. For this 
edge, e(s,v)  the algorithm assigns the weight w(e)= d(v), and the 
resulting inequality is: σ (u) +p (u) – d(v)≤ σ (s)=0.

By introducing all of these different edge dependencies, 
cycles develop within the potential graph. Like a reduced 
dependency graph, having these cycles makes it difficult to easily 
determine if there is a valid schedule for the graph that obeys 
all of the inequalities. It has been shown that as long as all the 
simple circuits in the potential graph have nonpositive weight, 
there exists a schedule that obeys all of the inequalities [34].

Energy aware task scheduling

The goal of most scheduling algorithms is to minimize 

application execution time. Minimizing application execution 
time normally comes at the cost of powering additional processors 
or increasing the operating frequency of those processors. As 
previously stated, getting back to an idle state is a great way of 
reducing energy costs, but adding the cost of powering additional 
processors or having them run at higher speeds can offset the 
power gains of a quick return to idle. For this reason, several 
scheduling algorithms have been put forth to try and find the 
balance between quick executions and power conservation [21].

When scheduling each task in a task graph, the possibility 
exists that a task has more than enough time to execute. This 
extra time would be when the ready time plus the duration of 
a task is less than its due time, ( ) ( ) ( ) + <r v p v d v  scheduling 
techniques that seek to reduce power usage without negatively 
impacting performance use this time by reducing the operating 
frequency of the processor these tasks run on. By reducing the 
speed at which the task executes, the schedule increases the 
duration of the task eating up the excess time and in turn is able 
to reduce the amount of energy the task uses [18,19].

CPU load balancing presents another great way in which 
scheduling algorithms can decrease energy usage. CPU load 
balancing does not directly affect processor energy usage, but 
instead it is a means by which scheduling can reduce the cooling 
demands of the CPU. The more work a processor does the hotter it 
becomes, so CPU load balancing seeks to reduce this heat buildup 
by spreading out the work load across multiple processors. CPU 
load balancing does cause performance degradation due to the 
increased context switching and decrease in cache performance 
[36].

MODELING CPU POWER USAGE
Power and energy conscious computer and software designs 

look for ways in which power usage can be efficiently balanced 
with performance. For this reason, computer scientists have 
begun looking for ways in which they can model computer 
energy consumption. These models give them the ability to 
gage whether a particular energy saving technique provides the 
benefits necessary to overcome the loss in performance. Ge and 
Cameron proposed an energy model that showed the effects of 
changing the CPU operating frequency [21]. This model provides 
a great argument for not operating CPUs at the absolute highest 
possible speeds. They were able to prove that at a cost of only 
1% in performance loss a savings of over 30% could be saved in 
energy usage by plainly reducing the CPU operating frequency.

Another method by which CPU energy usage can be modeled 
is by estimating the power usage of each individual instruction 
[37]. Measuring the power used by each instruction an application 
uses will give a fairly accurate model the energy a CPU will use 
while running the application. Utilizing the information provided 
by instruction level power analysis, application developers 
can optimize their applications to use less power intensive 
instructions thereby reducing the amount of energy their 
applications consume.

Energy ratio model

most CPU power models require that those who use them be 
able to know intimate details about how much power the CPU 
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will use or be able to affect the physical properties and settings 
in some way. Unless a software developer is working directly 
with the hardware designers of a system, he/she will probably 
not have the required knowledge of the CPU. At the same 
time, most software developers will not be able to change the 
physical settings of the CPU due to security and system stability 
restrictions placed by the OS. For this purpose, we put forward 
a CPU energy model based off of the CPU utilization and the 
operating frequencies.

CPU power usage

Power is the rate at which a task uses energy, i.e. ∆
=
∆
EP
t

, 

where the energy change the system under goes is,  ∆E  and ∆t is 
the time it takes to complete the task. From this then the energy 
used by a system can be derived as the amount of power used 
over a given amount of time,  *∆ = ∆E P t  [38]. If the amount of 
power a device uses varies with time, then the energy usage is

( ) *=dE P t dt . By taking the integral, we get the total energy 
used by the system as ( ) = ∫E P t dt .

In a multiprocessor system, each processor will have its own 
power usage equation and therefore be using a different amount 
of energy. This means that the total energy consumed by the CPU 
is the sum of each of the processing cores’ energy usage, giving 

us the following energy equation ( )
0=

=∑∫
N

i
i

E P t dt , where N is the 

number of cores in the CPU, with ( ) iP t being the power equation 
for the i-th processing core.

This equation shows that there are two different ways in which 
energy usage can be decreased. The first way is to reduce power 
used while completing a task and the second way is to reduce 
the time it takes to complete the task. Computer researchers and 
designers have put more work on the physical properties of a 
CPU because by doing so energy can be saved no matter what the 
software running on it does. As previously mentioned, software 
developers can still have a significant impact on the energy usage 
of the devices their applications run on [16,25].

We can now use Ohm’s law to get a good estimation of the 
power used by a CMOS chip. CMOS chips, upon which CPUs are 
generally based, use energy by charging and discharging set of 
capacitors, the power used to do so is given as 2 =P CV F , where C 
is the capacitance, V is the voltage, and F is the frequency at which 
the chip changes state [39]. Of the three properties that make 
up this equation, only frequency can be altered without making 
physical changes to the CPU or its settings. For this reason, most 
power saving designs utilizes lower operating frequencies. Using 
the equation for the power of a CPU transforms the equation for 

the energy used by a CPU into ( )2

0

 
=

=∑∫
N

i
i

üüü .

The clocks that drive most processors are not capable of 
continuous frequency ranges, but are restricted to discrete 
values at which they can operate in order to keep their design 
simple and be cost effective.  Limiting the operating frequencies 
means that each processor will only be operating in discreet 
power states, and the energy equation becomes:

N S
2

j ij
i 0 j 0

E CV f t
= =

=∑∑

where N is the number of processors, and S is the number of 
states the processor operates in.

The ability to set the processor’s frequency to different values 
has allowed operating system developers to have a great amount 
of control over power consumption. Unfortunately, as previously 
stated, applications running in user space do not have these 
capabilities due to security and system stability concerns. Since 
user space applications are restricted from having the ability to 
alter the operating frequency, software developers’ only means 
of controlling the CPUs’ energy usage is by altering the CPU 
utilization of each processor. 

This means that developers can only affect the energy 
consumption of their application by changing how much time 
each processor is in use. This alters the energy equation to only 
having two CPU states that is must be concerned with, ON and 
OFF. Most processors, especially those that are ACPI compliant, 
have more than just two operating states. How many of those 
operating states that get used depend on what the operating 
system does when halting a process thread or when a thread 
waits on data accesses. Since how these CPU states get used 
are not within the capabilities of most software developers, we 
consider all the non-active states the same as if the CPU was not 
in use. With the model only considering two states (ON and OFF) 
and also assuming that the processors are homogenous causes 
the energy equation to become:

2

0

 ( )
=

= +∑
N

ON iON OFF iOFF
i

E CV f t f t

fon and foff being the frequency of the processors in the ON and 
OFF state respectively, and ti0n and tioff as the time each processor 
spends in each state. 

Sequential application power usage

A sequential application can only utilize a single proces-
sor. With only one processor to consider the energy used is then 

2 ( )= +ON ON OFF OFFE CV f t f t . Since the application is only using one 
processor, the other N-1 processors are sitting idle and are operat-

ing at the OFF frequency for the duration of the execution. The en-

ergy these processors use is ( )
1

2

0

 
−

=

= +∑
N

OFF iON iOFF
i

E CV f t t . Without any 

changes between idle processors’ energy usage, the summation re-
duces to simply ( ) ( ) * 1+ −OFF ON OFFf t t N , meaning that the energy 
used by the idle processors is ( )2 * ( 1)= + −OFF ON OFFE CV f t t N . For 
a sequential application the total energy used by the CPU is there-
fore:

( ) ( )2 2 *( 1)= + + + −ON ON OFF OFF OFF ON OFFE CV f t f t CV f t t N

By combining and rearranging terms, then using algebraic 
simplification, we can reduce the CPU energy used by a sequential 
application on a multiprocessor system to:

( )2 ( ( ))= + + −OFF ON OFF ON ON OFFE CV Nf t t t f f

Parallel application power usage (applying amdahl’s 
law)

Parallel processing researchers and developers use Amdahl’s 
law to determine the theoretical limit to the performance an 
application can experience when parallelized. Amdahl’s law 
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states that the speedup of an application is the ratio of sequential 
to parallel execution time [40]. The goal of our model is to 
gage the improvement of a parallel application’s energy usage 
compared to its sequential equivalent when ran on the same 
number of processors. To do this, we applied Amdahl’s law to the 
CPU energy equations we derived. We look at the ratio between 
sequential and parallel energy usage on N processors, i.e. ERN. 
This ratio gives us

( )2

2
0

( ( ))
 

( )
=

+ + −
=

+∑
OFF ON OFF ON ON OFF

N
ON iON OFF iOFFi

CV Nf t t t f f
ERN

CV f t f t

Since CV2 is constant,

( )

0

( ( ))

( )
=

+ + −
=

+∑
OFF ON OFF ON ON OFF

N
ON iON OFF iOFFi

Nf t t t f f
ERN

f t f t

An Example

An example of how to apply this model would be to see 
the energy savings that would be gained by parallelizing an 
application on a quad-core processor. For this example the 
processors have an active frequency of 2.5 GHz and an idle 
frequency of 1 GHz. Assuming that the sequential version takes 2 
minute to execute, where for 1.5 minutes the processor is active 
and the remaining 30 seconds it is inactive. For the parallelized 
version, it uses all 4 processors for 30 seconds and is idle for 15 
seconds per processor. This gives us an ERN of 1.71 meaning 
that the sequential version of the application uses over 1 ½ 
times the energy as the parallel version. The Amdahl ratio for 
this application is 2.67, which means when we compare the 
ERNS, we see that the energy savings are being out paced by the 
performance gains of parallelization.

CASE STUDIES

We now present two different task scheduling case studies 
and a set of task graph schedulers to compare the standard speed 
up ratio to the parallel energy efficiency ratio. The reason we 
look at both is to gage how well the improvement in performance 
translates to energy consumption reduction. We believe that just 
because a particular scheduling algorithm and parallelization 
method performs better that does not necessarily mean its 
performance gains outweigh the extra energy costs to do so.

Subject applications

We chose these particular applications to present as 
examples of how to apply the energy efficiency ratio due to the 
different parallelization issues they contain. The first application 
is an exercise that has been used to demonstrate how a cyclic 
scheduler works [34], but does not actually do anything useful. 
The other application is a chemistry application that calculates 
the total force between a set of molecules.

Cyclic loop: Below is the code that is used to demonstrate 
cyclic dependencies and how different task schedulers can 
schedule their tasks [34]. The cyclic dependencies give us the 
ability to look at schedulers designed to handle this special type 

of problem and how well they perform.

( )

[ ] [ ]
[ ] [ ] [ ]
[ ] [ ]
[ ] [ ]
[ ] [ ]( )
[ ] [ ] [ ]( )

for k  0;  k  N;  k
{
 A :  a k   c k 1 ; 

 B :  b k   a k 2  *  d k 1 ; 

 C :  c k   b k   1; 

 D :  d k   f k 1  /  3; 

 E :  e k   sin f k 2 ; 

 F :  f k   log b k   e k ;

}

= < + +

= −

= − −

= +

= −

= −

= +

As we examine this code segment, we can see that there are 
both inter- and intra-iteration dependencies. For example, one of 
the inter-iteration dependencies is between tasks A and C. The 
operation A writes the value of c[k-1] to a[k], and so therefore 
C must precede A+1. Similar dependencies exist throughout the 
code segment. Even though there are some schedulers that will 
try to schedule the task across multiple iterations, we have to 
start the loop at k=2 otherwise we will end up with negative array 
indices.

From this code segment we construct the reduced dependency 
graph as show in Figure 5. The values in boxes near each task 
label are the duration or weight of the generic tasks. The other 
numbers near the edges are the weight of each edge. Looking at 
Figure 5 one can clearly see that the dependencies form three 
separate cycles: A A→B→C→A, B→F→D→B, and E→F→E. E We 
can also see that the only intra-iteration dependencies are B→C , 
B→F and E→F.

Force calculator: the force calculating example is a simple 
function that contains a set of nested FOR loops iterating across 
an array. The inner FOR loop performs some simple mathematical 
calculations on a 1-D array, iterating up to the current value 
of the outer loop’s index. The calculation within the inner loop 
starts with the difference between the elements pointed to by the 
indexes of the two loops and performs some calculations which 
are then subtracted from the element pointed to by the inner 
loop’s index and added to the outer loops indexed value.

With the Force Calculation function, the outer loop appears to 
be a perfect candidate for parallelization. Looking closer however 
reveals that there are dependencies on values that would be 
calculated in prior iterations of the loop. As part of the process 
of parallelizing the loop, we will have to find a way to eliminate 
this dependency. To keep our example simple, we focused our 
parallelization efforts to the inner loop instead.

Figure 5 Reduced dependency graph of sample code segment  [34].
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To parallelize the inner loop we had to take into account the 
set of calculations that is added to the element indexed by the 
outer loop. Summation parallelizations are a trivial matter and 
required only a simple reduction to complete. The ease by which 
we could tile the inner loop across multiple threads provided 
us with a simple method for parallelizing this function. Figure 6 
shows the resulting task graph of parallelizing the inner loop and 
reducing afterwards as part of the outer loop. Index i is the outer 
loop’s index, while j is used for the inner loop with the calc nodes 
being the calculations done inside. The sum nodes represent the 
summation reduction that is done at the end of each iteration of 
the outer loop. 

Task schedulers

The task schedulers we implemented were inherited a central 
scheduler class. Each of the scheduling algorithms we used in 
our schedulers use Graham’s idea of mapping tasks to a reduced 
dependency task graph. Each task is included as an instance of the 
Task class, and it is the instances of this class that the scheduler 
uses to generate the schedule for the order the tasks will run. The 
instances of the Task class contain their task’s duration or weight 
in addition to pointers to both their dependent tasks and their 
predecessor tasks. This allows them to be able to calculate their 
critical path and their dependent path values. This also provides 
them with the means to insure that their dependent tasks have 
been executed before they are.

The scheduler classes contain a list of all the tasks that it must 
schedule and a list of all the available threads. Each of the thread 
objects maintain a queue that contains each scheduled task and 
the time at which it is to start. As each task is scheduled, the 
scheduler will add it and its start time to the queue for the thread 
it is to be executed on. In most cases, the start time of each task is 
equal to the maximum schedule time ( ) ,σ v k , and duration, d(v) 
of the intra-iteration dependencies, or those dependencies that 
have zero weight edges. If a task is to be queued up on a thread 
that is not yet ready, determined by the start time of the task, the 
scheduler then places it in the queue starting immediately after 
the previous task in that thread’s queue. Schedule time, σ, of each 
task is:

( ) ( ) ( ) ( ){ }, , | ,0σ σ= + ∈ ≤ ≤v max P t u k d u u D k N

Where D. is the list of tasks v is dependent on and P(t) is 
the current scheduled time of the selected thread. Each of the 
different scheduling techniques we used utilized different 
methods for deciding what order each of the tasks was scheduled 
and which of the dependencies were included in D.

Since the weight of each task is an estimate, the scheduler 
needs to keep track of the estimated time that the application is 
at. It does this by having each task signal when it completes. The 
scheduler adds the start time and duration of the task to get the 
task’s completion time. If the task’s completion time is greater 
than its current estimated time, it signals all the threads with the 
new estimated time.

As mentioned earlier, all of the threads maintain a queue 
of tasks it is to execute and the start times for each of those 
tasks. Each thread is comprised of a WHILE loop, with the exit 
condition set by the Thread object’s Join method. Inside the loop, 
the thread waits until there are tasks in its execution queue and 
for the signal that the estimated application time is greater than 
its current task’s start time. Before each task is executed by the 
thread, it is removed from the thread’s queue. Once the queue is 
empty, the thread waits for additional tasks to be added or the 
signal that it is done and ready to rejoin the main thread.

Each scheduler we implemented inherits the basic methods 
for managing task and thread objects. The different schedulers 
are then only responsible for the actual scheduling of the tasks. 
The base scheduler object assumes that the task graph provided 
is a reduced dependency task graph and that it will be executed 
a set number of times, so it accepts as part of its constructor 
the number of iterations the tasks will be executed. It is then 
left up to the actual scheduling implementations to actually use 
this value or disregard it and assume that the task graph is an 
acyclical graph.

We developed four different task schedulers. Each of them is 
unique enough to provide a good look at the information provided 
by the energy model. We called the schedulers the Critical Path, 
Bottom-Up, First In/First Out, and the Bellman-Ford.

We previously mentioned that when there exists a cycle 
within a task graph, it introduces additional complexities that 
scheduling algorithms must deal with. One method that we used 
in all but the Bellman-Ford scheduler is to disregard the edges of 
G where ( ) 0≠w e , this removes the inter-iteration dependencies 
and allows us to use acyclical scheduling algorithms within the 
body of the loop. 

Critical path scheduler: The first method we used for 
ordering the tasks was by their length of each task’s critical path. 
Since the critical path is defined as the longest path from each 
task to the end or stopping node, this method is classified as an 
acyclical scheduling method. This means that in order for this to 
work on a cyclical task graph, all non-zero edges are ignored. The 
critical path of each task is lazy loaded using a recursive depth-
first search of the dependent tasks. Figure 7 shows a portion of 
the schedule that the critical path scheduler generated for the 
cyclic loop application.

The critical path scheduling method has two advantages: Figure 6 Force calculation task graph.
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simplicity and a guarantee of obeying dependencies. The 
simplicity comes from the fact that tree traversal algorithms 
are well known and easy to understand. The second advantage 
of dependency guarantee comes from the fact that by sorting by 
critical path means that since the tasks that need to be executed 
first will be, as they will have the largest critical path.

Bottom up scheduler: The next scheduler that we 
implemented organizes the tasks by looking at the path from 
each task back to the top of the task graph: what we call the 
dependent path. This is the opposite of the critical path. The fact 
that looking from the bottom up means that the possibility exists 
that the generated schedule will do so in a manner that does not 
maintain the dependencies between the tasks.

To make sure that the dependencies between tasks are kept, 
the Bottom Up scheduler schedules the tasks recursively. The 
order the scheduler looks at each task for scheduling is by the 
value of the dependent path. Before each task is scheduled, its 
dependent tasks are scheduled, also by their dependent path. 
Each task is scheduled this way until all the dependent tasks are 
scheduled, and then the depending tasks are. Figure 8 shows the 
schedule that the bottom-up scheduler generated for the cyclic 
loop, which for this particular problem is identical to the critical 
path. This is due to the fact that both schedule by sorting the 
longest paths.

First come scheduler: The least complex of all the schedulers 
is a first in first out scheduler. It assigns each task to a thread 
in the order it was added to the scheduler. It does not try to 
rearrange the tasks or do anything other than simply put each 
task on the next available thread. By scheduling the tasks in the 
order they were added to the scheduler, the first come scheduler 
gives all the control over the execution order to the developer. 

Figure 9 shows a portion of the resulting schedule that the first 
come scheduler generated.

Bellman-ford scheduler: The Bellman-Ford scheduler is by 
far the most complex, but it promises to produce a schedule with 
a makespan closest to the theoretical minimum. Unlike the other 
algorithms, the Bellman-Ford algorithm schedules the tasks 
across loop iteration.

The Bellman-Ford method works by first identifying the 
cycles within a potential graph and then using that information 
to calculate the values necessary for generating the schedule. To 
find the cycles within the task graph, we use Johnson’s algorithm 
[41] for finding all of the elementary cycles within a graph [41]. 
Once the cycles have been identified, each cycle’s duration to 
distance ratio, i.e. ρ(C), is calculated. The scheduler then uses 
ρ(C), to adjust the weights of the edges in the potential graph. 
Finally, the scheduler uses the Bellman-Ford method to calculate 
the longest path from that starting node to each task on the graph. 

The Bellman-Ford algorithm normally is used to find the 
shortest path, so using it to find the longest path is a slight 
deviation that requires flipping the distance check from less than 
to greater than. The length of each of these paths is then used to 
determine when to start each task. The Bellman-Ford algorithm 
works best when there are an unlimited number of processors, 
but as this is unlikely to happen, the scheduler uses the next 
free processor if there are no free processors when a task is to 
be started. Figure 10 shows the portion of schedules that the 
Bellman-ford scheduler generates. 

Applying the energy model: We now present how we 
applied our Energy Ratio model to the case studies. We look at 
both Amdahl’s ratio and our own to see how much energy each 
application saves when parallelized. We also examine the energy 

Figure 7 Critical path schedule.

Figure 8 Bottom-up schedule.

Figure 9 First come schedule.
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savings each scheduler offers and if their performance gain is 
justified. Using this information we make a decision as to how 
best to parallelize each application to both balance performance 
with energy savings.

As ERN is based off of Amdahl’s law, its values change much 
in the same way as those for Amdahl’s. Increasing the energy 
used by the sequential version of an application, or reducing the 
energy used by the parallel version will increase the value of ERN. 
In addition, like Amdahl’s law, the number of processors is the 
maximum value of ERN

Our testing setup was a laptop computer with an Intel Core 
I3 processor. Like all ACPI compliant processors, this processor 
has several different operating frequencies. We used Power Top 
[42], which reads the ACPI information from the kernel and 
outputs it into a human readable format, to identify the different 
operating frequencies. For this processor the active frequency 
was identified as 2.97 GHz and the lowest idle frequency as 913 
MHz.

Cyclic loop: We ran the schedules and estimated the power 
usage for cases when two and four processors are utilized. We 
stopped at four processors due to the fact that both scheduling 
algorithms did not scale past four processors. Table 1 shows the 
CPU utilization each algorithm used when running the application 
on two and four processors. From looking at this table, we can 
assume that for this example the Bellman-Ford schedule will use 
less energy due to its higher CPU utilization. 

Table 2 reports the energy efficiency ratios of two algorithms 
when compared to the sequential case. By looking at Figure 2 it 
would appear that we are getting poorer results by attempting to 
run each schedule on two processors as opposed to four. Actually 
considering that the theoretical maximum efficiency equals the 
number of processors we run the application on; running our 
application on two processors gets us closer to this value. Table 
2 shows us that when we run the application on four processors 
we are not even able to achieve half of the theoretical maximum, 
which like Amdahl’s law is equal to the number of processors 
available. While at the same time, when ran on two processors we 
are getting between 60% and 70% of this maximum. The closer 

we get to the maximum possible efficiency ratio, the better our 
energy usage will be.

It becomes apparent when looking at these three tables 
that overall CPU utilization plays a major part in how well an 
application performs and how much energy it uses. When this 
application was run on four processors each scheduler, except 
for the Bellman-Ford, used the processors a different amount 
but had the same average CPU utilization. This in turn resulted 
in having identical performance ratios. Clearly this demonstrates 
that when an application is running it will use less energy and 
perform better if the application fully utilizes the CPU cycles 
made available to it.

One of the points that Steigerwald et al make is that the 
energy efficiency of a computer reaches its maximum as the work 
load approaches 100% device utilization [25]. The reason for this 
is that even though a CPU or other part of the computer might 
be idle, it still uses energy. Keeping an idle device powered up 
is done so that it remains responsive and this in turn reduces 
latency. Also, if a device enters and exits an idle state repeatedly, 
powering it up and down not only increases the total energy 
usage but also can cause additional wear. Even still, like lights 
lighting empty rooms, powered up idle devices simply waste 
energy. It is this reason that the ACPI dictates that the longer a 
device remains idle, the lower the power state it enters.

Force calculator: The nature of the force calculation 
application presented some very interesting results with the 
schedulers used. Two aspects of the task graph we generated 
caused the ratio values to not vary between the different 
schedulers. First is the fact that there are no cycles in the graph, 
this means that there is no special cyclic handling necessary. 
Then the summation nodes limit how the application can be 
parallelized to only parallelizing the iterations of the inner loop.

With the ratio values not varying between the different 
schedulers our choice of scheduler will depend on how much 
overhead each adds to the application. Since we are looking at 
energy usage and execution time of the application, those are our 
biggest considerations. We might also rank our schedulers by 
memory usage, complexity or some other metric. The schedulers 
weren’t parallelized; therefore their energy usage directly 

Figure 10 Bellman-Ford schedule.

Algorithm Four Processors Two Processors
1 2 3 4 Avg. 1 2 Avg.

Bellman-Ford 91.67% 63.64% 56.82% 68.18% 70.08% 97.38% 96.34% 96.86%
Bottom-Up 100.00% 25.00% 25.00% 4.17% 38.54% 100.00% 54.17% 77.09%
Critical Path 100.00% 25.00% 25.00% 4.17% 38.54% 100.00% 48.00% 74.00%
First Come 70.83% 16.67% 25.00% 41.67% 38.54% 100.00% 54.17% 77.09%

Table 1: Cyclic loop CPU utilization.
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correlates to the amount of time they add to the application’s run 
time.

Table 3 gives the time each scheduler took to generate the 
schedule for the force calculation application. Besides being 
the most complex and adding the most overhead via code and 
memory usage, the Bellman-Ford took two orders of magnitudes 
longer to generate its schedule. Its run time alone makes it a 
poor candidate for parallelizing an application like this. On the 
other hand, the simplest scheduler took the least amount of time 
to generate its schedule, making it the best choice of the four 
schedulers.

The way we setup the task graph for the force calculation 
application means that the application parallelizes across an 
almost unlimited number of processors. Being able to parallel 
across a large number of processors allowed us to look at this 
application’s performance and energy usage as would be seen 
inside a data or high performance computing center. We are 
also able to gain a greater insight into the effects of parallelizing 
across a large number of processors. Figure 11 shows the results 
for the two ratios as we ran the force up to 32 processors. 
When we examine Figure 11 it become clear that after a certain 
number of threads there is no longer any performance gains 
to be achieved by adding more threads. Like not being able to 
parallelize the cyclic loop application past four processors, adding 
more processors past this point only wastes those resources as 
the application is not able to fully utilize them. Additionally, our 
energy efficiency ratio moves further and further away from the 
maximum the more processors that are made available to the 
application.

Looking at these results we can determine that after about 
16 processors we are no longer able to achieve any higher 
performance gains and should not need more than that to run this 
application. Another observation we get from Figure 11 is that if 
we can sacrifice performance, then our energy conservation will 
be better when we run this application on fewer processors.

Further observations

After we completed our work with the two applications we 
continued to look at the behavior of the energy ratio. We were 
particularly interested in two extremes. The first we looked at 

is what happens when a device has the worst possible power 
management setup, or when the device does not have an idle 
power state to go to. We also looked at how our energy ratio 
plays out when a device simply is turned off when it becomes 
idle. Both of these situations provide insight into how we should 
be designing our computational devices in the future.

No idle state: Our energy efficiency ratio has an interesting 
characteristic when foN = foff the equation reduces to Amdahl’s 
speed up ratio, mentioned earlier. By ERN being equal to 
the speedup ration, it tells us that if the frequency of the idle 
processors does not change, then the power improvements are 
completely dependent on being able to complete the tasks as 
quickly as possible.

With modern operating systems and processors, this should 
not usually be the case, unless the power management settings 
are set in such a way that the processors never go into an idle 
state. Even if the processors are set to never go into an idle 
state, then like what was stated earlier we want to complete the 
application run as quickly as possible. This still does not change 
that developers need to be optimizing their applications in order 
to reduce the energy usage.

Turning off idle processors: The other scenario we looked 
at is when the idle processors are turned off. When this happens 
foff is zero, and the ratio becomes:

0

( )  
( )

=

=
∑

ON ON
N

ON iONi

t fERN
f t

Now if we assume that the total time it takes to execute all 

the tasks remains the same, then ( ) ( )
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=
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i

t t  and EN=1 Or 

in other words if the idle processors are completely turned off, 
then the power consumption of an application does not change 
between the parallel version and its sequential equivalent as long 
as the total execution time on all processors remains constant.

By having no improvement in the power consumption when 
parallelizing tells us that when the run time of the application 
remains fixed, the CPU utilization does not matter. At this point it 
becomes no longer necessary to add additional processors to the 
application solution. This means that by reducing the number of 
processors to the bare minimum necessary to complete the tasks 
on time, we can increase the CPU utilization for the duration 
of the application run, and this becomes the best energy usage 

Algorithm Four Processors Two Processors

ERN Amdahl ERN Amdahl

Bellman-Ford 1.930 2.803 1.408 1.937

Bottom-Up 1.357 1.542 1.266 1.542

Critical Path 1.357 1.542 1.241 1.480

First Come 1.357 1.542 1.266 1.542

Table 2: Cyclic loop performance ratios.

Algorithm Run Time(s)

Bellman-Ford 280.198

Bottom-Up 9.155

Critical Path 1.564

First Come 1.507

Table 3: Scheduler’s run times.

Figure 11 Parallelization ratios for the force calculation application.
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solution.

One example of where designers are placing too many CPUs 
in devices is the newer model of smart cell phones. Cell phone 
manufacturers have begun to increase the number of cores in 
a cell phone’s CPU, much like those in traditional computers 
and servers. Unfortunately, applications on cell phones are 
fixed duration applications, so it does not matter how long an 
application takes to run. At the same time, most cell phones do not 
allow for multitasking, and since the applications are designed to 
run with limited resources the benefit to having additional CPUs 
is fairly limited.

CONCLUSION
As computer technology has progressed and become more 

inexpensive and mobile so has the need for energy conscious 
designs increased. Most of the done towards making devices 
use less energy is centered around improving the hardware, but 
software can and does play a major role in how much energy a 
device uses. If software developers are not trying to keep their 
applications optimized, then ultimately they are contributing to 
the excess usage of energy on the devices their programs run on.

One of the ways in which hardware has improved over the 
past few years is the addition of more than on processing core in 
CPUs. Multicore processors have the potential for both increasing 
the performance of an application and decrease its energy 
usage. Knowing the best method for parallelizing an application 
can be treacherous, as different parallelization methods are 
not guaranteed to give the performance desired and if care is 
not given can cause unanticipated errors. It is this reason we 
presented a ratio that software developers can use to gage if the 
performance gains achieved through the various parallelization 
methods justify the energy costs and increased application 
complexity.

Using the data from both Amdahl’s ratio and our own energy 
efficiency ratio clearly shows that the greater the CPU utilization, 
the greater the energy efficiency an application will have. Even if 
the CPU were to use the same amount of energy when executing 
a parallelized version of the application as its sequential version, 
the less time it takes then the entire computer system will expend 
less energy overall. 

By simply reducing the time that the application takes to 
execute, the sooner the CPU will return to an idle state. This 
“race to idle” allows a computer to return to the more energy 
efficient state sooner and thereby save energy [26]. At the same 
time, the more CPUs that are in use, then the more power will be 
used. Using more CPUs would lead one to believe that the system 
would be using more energy. On the contrary, by utilizing more of 
the processors an application will be more likely to finish quickly 
and leave fewer processors idle wasting energy.

Future work

This energy efficiency ratio presents a lot of good information 
for developers to use in making the decision to parallelize their 
applications. This does not mean that there are not ways in 
which it could be improved. A lot was left out in order to keep 
thing simple and easy to use or to keep it as independent of the 
hardware as possible.

One thing that was left out of the energy efficiency ratio 
is the relationship between the frequency of the processor’s 
clock and the voltage the processor needs to maintain stability. 
Also the energy efficiency ratio does not take into account the 
energy usage of anything other than the CPU. The CPU actually 
account for only a small percentage of the overall energy used 
by a computer. Other components, such as the power supply and 
video adapter, use extremely more power than the CPU. In fact, 
for mobile devices the screens use the most energy, and users are 
advised to keep their screens off as much as possible.
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