
Central JSM Computer Science & Engineering

Cite this article: Bonner D, Namin AS (2014) Measuring the Energy Efficiency Ratio of Parallelized Software Applications. Comput Sci Eng 1(1): 1002.

*Corresponding author
Akbar Siami Namin, Computer Science
Department, Texas Tech University, Lubbock, TX,
USA, Email:

Submitted: 22 January 2013

Accepted: 20 February 2014

Published: 28 February 2014

Copyright
© 2014 Namin et al.

 OPEN ACCESS

Index Terms
•	Energy model
•	Multicore platforms
•	Green computing

Research Article

Measuring the Energy Efficiency
Ratio of Parallelized Software
Applications
Delbert Bonner and Akbar Siami Namin*
Computer Science Department, Texas Tech University, USA

Abstract

Rising energy costs, the shrinking size of mobile devices and political influences
have begun to force device and software developers to look at ways in which they
can reduce their energy usage. While most energy savings models can be found in
how hardware is designed, software plays a key role in how devices can be more
energy efficient because software is what ultimately controls the hardware it runs
on. At the same time a careful balance between performance and energy savings
must be maintained. In order to examine this balance, researchers have begun to put
forth energy models and metrics that rely on dynamic voltage and frequency scaling
to optimize performance and energy usage. The problem with these models and
measurements being that while most software is ran on devices capable of changing
their processor frequency and voltage, most developers do not have the ability to
change these settings due to the operating system safety and security restrictions. We
present an alternative energy ratio that uses the work and idle times of the processor
to examine energy efficiency gain by parallelization of software systems. Using this
ratio we show how software developers can examine their parallelization efforts and
decide not only which method will provide them with the performance they seek while
not sacrificing energy usage, but also when it is expedient to reduce the amount of
processors used by their application. The model is evaluated through a number of
scheduling algorithms and case studies.

INTRODUCTION
In 1965, Moore made a series of predictions that have

since become part of the standard for which improvements
in computing performance and costs are judged. The basis of
Moore’s Law is that both the number and the density of transistors
on inexpensive integrated circuits would double approximately
every two years [1]. This increase has allowed integrated circuit
designers to increase performance of their chips and reduce their
cost as well. The reduction in size and cost of integrated circuits
and the devices that utilize them has provided the means with
which computer devices have been integrated into everyday life.
Computer devices, such as modern smart cellphones, come in
packages many orders of magnitudes smaller and are significantly
cheaper. It is now possible to purchase fully functional computers
for less than the cost of a tank of gas [2].Transistor sizes have
continued to decrease to the point where significant performance
gains can no longer be achieved by a simple reduction in size. This
has forced chip designers to look for other ways to improve their
devices. Data caching, pipelining, and instruction set reductions
are a few of the ways that processor designers have used to
increase performance without having to rely on reducing the size
of the transistors used.

Recently, CPU designers have turned towards building multi-
processor CPUs. While multi-processor systems are nothing
new, packaging multiple processors on a single chip is a fairly
recent advancement. Not only have CPU designers put multiple
processors on a single chip, they have arranged the data caches in
such a way that communication between the processors has also
improved. By and large, these types of improvements have been
the basis by which Moore’s law continues to hold true.

Much like how decreases in cost and size made computing
devices readily available, so has the inclusion of multiple
processors on a CPU expanded the reach of multiprocessor
software development. The average developer now has the
ability to write truly parallel applications and take advantage of
the additional throughput this provides.

Rising energy costs

Over the past few decades, several forces have collided
to demand a reduction in the energy demands of our devices.
This runs counter to what has happened as a consequence of
the increased performance gained by increasing the transistor
density of the integrated circuits these devices depend on. By
increasing the transistor density of integrated circuits, we have

Central

Namin et al. (2014)
Email:

Comput Sci Eng 1(1): 1002 (2014) 2/15

also increased the amount of energy they require. The increase in
energy demands due to density increases has begun to outpace
the energy reduction provided by smaller transistors. While
today’s processors have far greater processing power than those
of just a few years ago, they also require much more energy.

One of the forces that continually influence decisions, no
matter what is being decided, is cost. Lately, the cost of the energy
required to run computer devices has begun to be a concern.
Both the cost of producing energy and the demand for energy
have risen sharply over the past few years [3]. This has caused
energy prices to become a major factor in the operating expenses
for any decent sized computer network.

In 2011, Google disclosed that it uses an estimated 260 million
watts of electricity continually [4]. This is roughly the same
amount of energy that 200 thousand home use, which runs about
$1,500 per household [5]. In other words, Google’s computational
energy costs were over $250 million in 2011. While Google made
$38 billion in 2011, this still represents a significant amount of
money spent on a single expense [6].

Political influence

While costs have a major impact on all industries, politics can
have the same level influence as well. The past few decades have
seen the rise in the political demand for resource conservation
and sustainability. What is being called the green movement has
begun to impact the IT industry as well in the form of “green
computing.”

Green computing works towards the goal of having
computing resources with little to no impact on the environment
[7]. The basic objectives of green computing are the same as
the general green movement: those of reducing environmental
impact of production and disposal of computers, an increase
in recyclability of afterlife devices and waste, and reduction in
computational energy usage. The last objective is the only one
that most IT professionals have any real direct influence over and
usually the most focused on.

In 1992, the US Environmental Protection Agency launched
the Energy Star Program. This program’s goals were to encourage
companies to improve either their own energy consumption or
that of their products [8]. Other governments have introduced
similar initiatives or have adopted the Energy Star program as
well. The primary way by which the Energy Star program achieves
its goal in energy usage reduction is by certifying appliances as
either using only the minimal amount of energy necessary or
including methods that work towards reducing its overall energy
usage. Energy Star estimates that their certification program
helped Americans save over $20 billion in 2010 [9]. When Google
disclosed how much energy their data centers were using, they
also used that as an opportunity to discuss the ways in which
they were trying to become greener [4]. Some of Google’s green
initiatives include an expansion in its usage of renewable energy
sources and designing data centers that both run hotter than
normal and use natural methods for temperature control.

As part of getting computers certified by the Energy Star
program, hardware designers introduced the Advanced Control
Power Interface (ACPI) industrial standard for reducing power

consumption of idle computer components [10]. The basic
concept for a device that is ACPI compliant is that as it remains
idle it moves from a higher energy using power state to one with
a lower energy usage. For processors, this usually means that
each processor has at least two power states: an operational state
and a stop or halted state.

Smart grid and energy optimization

Between 2000 and 2001 California experienced what has
since been referred to as the California Energy Crisis [11]. While
there were several influencing factors, the basic problem was
that energy demands in California were allowed to outstrip the
energy that was being supplied. The ultimate result was that over
1.5 million energy customers were affected by rolling blackouts,
sometimes in the heat of summer. Investigation into the causes
identified illegal market manipulations as the primary cause of
the energy shortage, but the wide spread blackouts would have
been lessened had the power grid been better able to handle the
demands placed on it.

Events like the California energy crisis, coupled with rising
energy costs and pressure for sustainability in our energy
production has placed a greater emphasis on how our energy
grids are managed. The key to this management is to making
sure that energy production meets the demands. Unfortunately,
energy usage demands and production methods are far from
constant. For example, solar energy plants will produce more
energy during bright sunny days than at night or on cloudy days.
At the same time, the energy usage patterns of the different energy
customers follow similar daily and seasonal patterns. Smart grids,
or power grids that utilize computers and information gathering
technology to manage how the energy is propagated across the
grid, are being looked at as a means of optimizing the power grid
along the lines of these energy usage and production patterns
and reduce the likelihood that future energy crises occur.

Smart grid technology seeks to finds ways to improve the
power grid by incorporating information technology into the
various parts of the grid [12]. Currently, information technology
is only deployed locally in the power grid as a measure of safety
to protect power assets from overloading and failure. Smart
grid proponents and policy makers seek to further increase
the amount of information that is gathered and analyzed by
computers deployed within the grid. These individuals hope that
by turning the management of the power grid over to computers
that not only will power management be increased but that the
grid will also be more resilient to failure by giving it the ability to
self-heal when a failure in one or more components occurs.

The ultimate goal of building a smart grid is finding ways
in which power demands can be met using the most optimal
methods, hopefully utilizing renewable or sustainable sources.
By using smart grid technology, power grid managers have the
ability to fully utilize excess energy that is produced cheaply,
like that from a solar power plant at peak times, even if the peak
production time does not match peak demand times by either
shuffling the energy around to where it is needed or storing it
off for later use. While this is possible without the use of a smart
grid, smart grids make it much more affordable by being able to
predict when it is more efficient to store excess energy or shuffle
it across long distances.

Central

Namin et al. (2014)
Email:

Comput Sci Eng 1(1): 1002 (2014) 3/15

Mobile energy demands

The decreasing size of circuits has given rise to a new type of
energy management problem in form of mobile computing. What
started as easy to setup portable computers now encompasses a
variety of devices, including laptops, mobile phones, and tablet
computers. Each of these devices utilizes some sort of battery
to meet its on-the-go energy demands. To keep the total cost of
these devices to a minimum, these devices almost always include
a rechargeable battery.

In order to increase the mobility of their devices, developers
strive to increase the amount of time a device will be able to
operate between recharges or battery replacements. Regardless
of whether the battery is rechargeable or not, the batteries in
mobile devices only provide a finite amount of energy. This means
that there are two different ways by which a device can increase
its mobility: increase the capacity of the battery or decrease the
energy demands of the device itself.

As current battery technology is limited in what it can do
to increase the capabilities of the batteries powering mobile
devices, the focus of mobile device development has shifted to
minimizing the energy demands of mobile devices. Also, mobile
devices have decreased in size, which places a severe limitation
on the size of the battery included. For this reason, mobile devices
usually do not use the same hardware as their desktop and server
siblings. Instead, they use processors that are designed to both
use less energy and generate less heat. In most cases, the tradeoff
of performance for mobility is acceptable.

Software’s impact on energy

While the largest amount of energy can be saved by improving
computer hardware, software can also play a significant role [13].
The most basic way in which software affects energy consumption
of a computer is in how the software utilizes and controls the
hardware it has available. In other words, how an operating
system manages the energy states of each of the devices can play
have a major effect on how much energy a device use.

Early in 2011, the Linux foundation released the 2.6.38
version of the Linux kernel. Shortly after that, Tom’s Hardware
did a review of the latest Ubuntu release to that used the 2.6.38
kernel and found that the battery life for their testing rig dropped
by almost 50%, confirming an early report of a possible problem
with the kernel’s power management [14].

The problem was found to be in the Active-State Power
Management (ASPM) for PCI Express [15]. What happened was
there is an issue certain BIOSes that have their ASPM support
miss-configured, and this can cause various problems if the power
mode is dropped on unsupported devices. To work around this
issue, ASPM for the PCI express was disabled and its state cleared
when it appeared that ASPM was not supported. The maintainers
for the PCIe driver found that the proper solution was to only
clear the ASPM state only when the BIOS handed control over to
the operating system [16].

What this illustrates is that because hardware is ultimately
controlled by the software ran on it, software still plays a major
part in how much energy devices use. This means that ultimately
software developers must pay close attention to how they write

their software if they don’t wish to negatively impact the power
usages of the devices it runs on.

The structure of the paper

• In this paper we present an energy efficiency ratio for
multiprocess applications that relies on CPU idle and
work times. We derived this model from the power
usage of a CPU and Amdahl’s law [17] and show how
it can be used to determine if a multiprocess solution
to a problem will provide the desired energy savings.
We then use this ratio to examine the energy efficiency
of different applications and task schedulers, and then
use this information to make arguments for which task
scheduling method to use and the number of processors
our application can be parallelized across. This paper’s
contributions are:Introduce a speedup ratio that relates
CPU utilization with energy usage.

• Use this model to examine the energy efficiency of two
different applications and several task schedulers.

• Examine how this ratio combined with Amdahl’s law can
be used to determine the optimal number of processors
for a parallel application to use.

The rest of this paper is organized as follows: Section 2
reviews other models and energy saving techniques. Section
3 examines how software engineering can affect energy usage.
Section 4 looks at task scheduling and how it is used to save
energy in parallel applications. In section 5 we introduce our
energy efficiency ratio. Section 6 is where we examine our case
studies and apply the ratio. And section 7 presents our conclusion.

RELATED WORK
Software development researchers have recently begun

turning toward looking at how software can be written with
energy conservation in mind. The goal these researchers
are looking for is to predict the energy usage of differing
parallelization methods and choose the one that will meet the
performance demands while minimizing energy usage. The
basic idea is to slow the processors down during idle times or
when there is more time than necessary to complete a given task
[17]. Multithreaded task schedulers use this method of reducing
the frequency of the processors when tasks have more time to
execute than they need [18,19]. By using dynamic voltage these
schedulers can manipulate how they schedule their tasks to
minimize application energy usage.

Being able to accurately model energy usage is of extreme
importance. Rountree et al. [20] pointed out that reducing 10% of
the processors in a cluster by 50% or more would net an energy
savings of over 5%, but only if this reduction did not delay critical
tasks. If the system is forced to remain active due to these critical
tasks by an additional 1%, then the system will actually use more
energy than it would have if it had not reduced the processors
operating frequency [20]. One of the key focuses of this line of
research has been the development of software energy usage
models and comparison ratios. These models’ and ratios’ goals
are to give software developers the information they need in
order to develop energy conscious software.

Central

Namin et al. (2014)
Email:

Comput Sci Eng 1(1): 1002 (2014) 4/15

Ge and Cameron define an energy model that relies on the
operating frequency of the processors [21]. This model allows
developers to estimate the energy performance of a parallel
application running at different frequencies. Ge et al. went on
to use this model in developing a runtime power management
system for high performance computing clusters, aimed at using
dynamic voltage and frequency scaling to minimize a cluster’s
energy usage [22]. By utilizing this power management system,
Ge et al. were able to achieve over 20% energy savings for the
NAS parallel benchmarks.

Like Ge and Cameron, other researchers have applied energy
modeling to Amdahl’s law in order to get a good idea on how well
an application’s parallelization will save energy. Song et al. [23]
developed a model based on a large range of different parameters
that all have an effect on the amount of energy a computer system
uses. They look at such things as what part of the workload takes
place in the CPU versus memory reads/writes, parallelization
overhead, and the various operating parameters of the device.
Using these values, Song et al were able to estimate the iso-energy-
efficiency of an application and provide application developers
with a way to fine-tune the performance of their applications for
energy conservation with only negligible performance loss [23].

Rountree et al decided to forgo simply modeling an
application’s energy by indirect methods, and instead proposed
a framework whereby they were able to measure the workloads
on and off the CPU [20]. This framework inserts memory load
markers into the data caches, which indicate when a processor
is waiting on a memory read or write. Using these markers this
framework is able to determine when a processor’s frequency
can be reduced, thereby saving energy. Rountree et al used this
approach to reduce the median absolute error by an order of
magnitude.

The problem with most of these methods for both modeling
and reducing energy usage is that they rely on things outside the
reach of most software developers. While these methods are great
for operating system, compiler and even hardware developers,
software developers will rarely be able to make much use out of
these methods due to either their complexity [23], their reliance
on setting inaccessible to user level applications [21], or the
need to add operating system or hardware monitoring methods
[20]. Instead, software developers need models that contain
information they have easy access to and can actively affect, such
as CPU idle time.

ENERGY-CONSCIOUS SOFTWARE ENGINEERING
The combination of rising energy cost, increased mobile

devices, and political influences has caused there to be a greater
concentration on ways to reduce the energy demands of our
computers and related devices. Most research and development
into computer energy usage focuses on how to decrease the
energy demands of computer hardware. There are many different
parts of a computer that require their own energy conscious
design, providing hardware developers plenty of things to look
at.

As illustrated by the power issues that the Linux kernel
recently experienced [14], software can play a major role in how
much energy a device uses. Computer science research has begun

to start looking into improving software engineering practices
so that it not only focuses on application performance, but also
energy usage as well.

Intel’s response to green computing has been to release
processors that are more energy conscious. A book published
by Intel, Energy Aware Computing, helps software developers
make their software more energy efficient [24]. In advance of
the book, the authors have released a few papers covering some
of its material. The key focus of what the authors present is
minimizing what software is doing while the system is idle [25]
and maximizing the time the computer can sit in an idle state [26].
For the later, they offer the basic suggestions of simply improving
the overall performance of the software that gets written. Their
suggestions reap the most fruit when applied during the design
phase, since it focuses on picking the most optimum algorithms
and data structures for the given tasks. Their reasoning is that
if a computer is able to finish its work quickly, then it will be
able to return to a lower power state sooner and begin saving
energy. They call this the “race to idle”. Due to the race to idle,
programmers can greatly decrease the energy consumption of
the devices their programs run on by simply optimizing their
algorithms.

Effects of nested loops

The loops within an application offer a good straightforward
area of optimization because by improving the tasks within a
loop by a small amount, that small amount is multiplied by the
number of iterations the loop goes through. The easiest way to
improve the execution of a loop is by making sure that if there are
data accesses within that they are in the same order as the data is
stored in memory. Figure 1 shows the standard arrangement of
the elements in a two dimensional array. If each row is followed
immediately by the next row, i+1 , then i is the major index and j
is the minor index. When iterating across this multi-dimensional
array, the outer most loop should iterate across the most major
index, i. Then the next nested loop should be for the next most
major index until the inner most loop is iterating across the most
minor index. For this two dimensional array the inner loop’s
index would be j. Arranging loop iterations so that memory
accesses are sequential has a high chance of improving cache hits,
which reduces both the energy expended in the memory accesses
and the time it takes for each of those accesses [27].

Memory access vs. data caches

 Memory and data caches are one of the improvements
to hardware that has greatly increased performance without
increasing clock speed. A successful cache hit can greatly reduce
the amount of time a processor has to wait for a piece of data

Figure 1 Two dimensional array arrangement.

Central

Namin et al. (2014)
Email:

Comput Sci Eng 1(1): 1002 (2014) 5/15

to be available. A great way to improve performance is to limit
how much memory an application needs at any given time to how
much will fit in the CPU cache. By keeping the immediate memory
needs of an application small enough to fit within the CPU cache,
a software developer can insure that cache hits will rarely miss.
If the memory needs of an application will not fit within the CPU
cache, then another option is to focus the work being done on
blocks that will and only moving on to the next block when all
operations that can be completed on the current block have
finished [28].

Effects of multithreading

With the advent of readily available and inexpensive
multiprocessor system, a new avenue has opened up for the
average software developer to improve the performance of their
applications: multithreading. Multithreaded applications give
developers the potential ability to decrease the amount of time it
takes for an application to perform any given task. Additionally,
multithreaded applications can provide a means of keeping the
CPU busy when it has to wait on either devices or memory loads,
which in turns helps improve an applications performance.

The first major availability of multiple processors came in the
form of Intel’s hyper threading technology. Essentially, this is a
hardware trick where the processor reports double the number of
actual computational units. A hyper threaded CPU is able to do this
because it has doubled the number of state registers, allowing it to
maintain the state of different execution threads simultaneously.
By doing this, the CPU is able to be continuously executing tasks
even when a non-hyper threaded CPU would stall do to a cache
miss or some other wait operation [29]. Multithreading can have
a massive effect on the runtime of an application. Even on a single
processor, by adding additional thread software developers can
still increase the performance of their applications since the
processor will be kept busy. Multithreading has the potential
to greatly improve the performance of an application, but only
if care is given as a single mistake can be much more costly
in a multithreaded application than in a sequential one. For
example, mistakes in thread synchronization can cause dead
locks or unintended delays which can add up to the point where
a multithreaded application’s performance is worse than its
sequential equivalent.

As an example, in a recent exercise in application
parallelization, we took a finite difference solver used as a way to
model the propagation of an acoustic wave through a stochastic
velocity model, in order to generate synthetic seismic data
[30,31,32]. From the equation for the acoustic wave modeling,
each cell is dependent on its past two values, as well as the most
previous value of the two cells above, below, to the left, and to the
right. Figure 2 shows an example of the dependencies that exist
in calculating each cell. The core of the calculations took place in
a simple sequential matrix data processing loop, itself in another
loop so that the matrix could be recalculated for each time slice of
the wave propagation.

The original application was written in MatLab, but for this
exercise we decided to write it in C++ in order to gain direct
access to the threading methods. Due to the nature of the
dependencies across each time slice, only the matrix processing

loops were parallelized. A simple block tiling method was used to
cut the matrix up into equal blocks for each thread to work with.

Two different threading approaches were used in the final
application. The first method started and stopped of each thread
after it was done working for the current time slice. The other
method only created the threads once, but used barriers to
synchronize the threads with which time slice they should be
working on. The application was run with between 1 and 32
threads on a system with a quad-core processor.

Figure 3 shows the execution times with the varying number
of threads. A couple of noteworthy things can be seen in Figure 3.
First, there is an immediate decrease in the execution time with
only a few threads, and that adding more threads after a certain
point does not continue the downward trend. This brings up the
second interesting point: using the barriers to keep the threads
synchronized ads enough overhead that after a certain number of
threads the application actually performs worse than just running
it with one thread. This is in contrast to starting and stopping the
threads after each time slice where the performance usually gets
slightly better with each thread added. Looking at Figure 3 and
using the “race to idle” argument, we can make the assumption
that the method of starting and stopping the threads will be more
energy efficient. Additionally, we can assume that trying to use
more than 6 or 7 threads will only decrease our energy efficiency,
since the performance gains taper off after that point.

When there are more threads than there are available
processors the system must swap the threads across those
processors. This causes the barrier method performs worse than

Figure 2 Finite difference solver cell dependencies.

Figure 3 Finite difference approximator execution time by thread
count.

Central

Namin et al. (2014)
Email:

Comput Sci Eng 1(1): 1002 (2014) 6/15

the start and stop method due to context switching, cache misses,
and synchronization costs. All of these things add up to severely
decrease the performance of the barrier method.

On the other hand, the start and stop method does not have
the context switching issue due to the fact that by the time each
of the later threads are started, the first few have completed,
thereby keeping the number of executing threads low enough to
keep context switching to a minimum. Also, at a certain point the
block that each thread works on gets small enough to fit within
the processor cache. When all the data that a processor needs to
complete a task is available in its cache, the processor’s prefetch
will be able to fill the cache with this data and the processor
will have this data available there for the duration of the task’s
execution [28].

Adding additional threads to an application does not
necessarily guarantee better performance. Instead, the only
guarantee given by additional threads is an increase in complexity.
In fact, if proper care is not given, application performance can
actually degrade beyond usability due to threading complications
such as resource locking and task scheduling.

POWER EFFICIENT TASK SCHEDULING
Researchers look for ways in which applications and tasks

can be scheduled to both optimize their performance and energy
usage. We look now at one of the ways in which tasks can be
scheduled for both performance and energy conservation.

The job shop problem

One of the fundamental problems in developing efficient
multiprocess applications is known as the job shop scheduling
problem [33]. Graham described this problem as having a set
of tasks { }1 mT T , ,T= … that are to executed uninterruptedly
on n identical processing units Pi [33]. In addition, there exists
a partial-order p on T that states if i jT Tp then Tj cannot start
until Ti completes and a function of time ì : T [0,)∞→ The
order in which the tasks are executed given by a linear ordering

()1
: , ,…

mk kL T T of T, called a task or priority list. Efficient task lists
are the ones that minimize the makespan, or total time it takes to
execute all the tasks.

Graham further demonstrated that the tasks, their partial
ordering p on T and the function µ could be represented by a
directed graph (),µpG . He set (),µpG such that the vertices
corresponded to the tasks, Ti and the directed edges from Ti
to Tj would indicate that pi jT T . Finally, Graham weighted
the vertices of the graph, where the weight of each vertex is
the length of time each task takes to execute. From this setup,
application developers and researchers have been able to devise
various priority lists, or schedules, by applying graph routing
techniques [34].

Cyclic and acyclic task graphs

There are two different ways that tasks can be modeled using
task graphs. The first is when each vertex represents a single
task that executes only once [34]. This scenario produces an
acyclic graph. The second way is to have each vertex represent
a generic task that is executed infinitely often. This special
case of the job scheduling problem is known as the basic cyclic

scheduling problem and is “the most elementary formulation for
studying repetitive applications,” and is referred to as a “reduced
dependency graph” [34]. This reduced dependence graph is
denoted by G=(V,E), where V is the list of generic tasks, and E is
the edges between the vertices which represent the partial-order
dependencies. From this, researchers labeled each operation by a
pair of indices (){ }, | ,0∈ ≤ <v k v V k N , where N is the number of
executions each task will undergo.

Researchers have further expanded the reduced dependence
graph by weighting the edges, creating a weighted directed
graph, denoted by G=(V,E,d,w), where the function *: →d V N is
the duration of each task, and the function : →w E N gives the
dependence distance of each edge. The edge weight function,
w, states that for any edge (),= ∈e u v E , and for any k such that

()0 ≥ < −k N w e , the operation ()(), +v k w e cannot start before
the operation (u,k). For example, in Figure 4 the duration of task
A, d(A) is 4 and the edge between it and task B has an edge weight,

()A Bw e → , of 3.

As stated earlier, efficient schedules are ones that minimize
their makespan. Scheduling problems solved by using an acyclical
graph look at the total makespan of the schedule, considering
each execution of each task. If there is a loop within the
application, then the schedule is highly dependent on the number
of iterations, N, within the loop. This means that a schedule is a
function :σ × →V N N that respects the dependence constraints:

() ()() () (), , 0, , ,σ σ∀ = ∈ ∀ ≥ + ≥ +e u v E k v k w e u k d u

By using a reduced dependence graph when trying to
schedule the tasks within a loop, researchers have been able to
create schedule for any value of N. For these types of schedules,
researchers measure the efficiency not by looking that the total
makespan for the schedule, but by the average cycle time, λ,
which is defined by [34].

() (){ }
N

max v,k d v | v V,0 k
liminf

N∞→

σ + ∈ ≤ <
λ =

N

Additional complexities arise when the reduced dependency
graphs exhibit cyclic patterns. When there exist cyclic patterns
within a graph, tasks end up depending on themselves. These
graphs produce cyclic schedules, which is a schedule such that

(),σ λ= +vv k c k for some ∈vc N and λ ∈N . The schedule σ is
a periodic schedule that schedules slices of the overall schedule
with period λ units of time. Within each slice, only one instance of
each generic task is executed.

Schedules can be produced from reduced dependence graphs
by using two different methods. The first method schedules the

Figure 4 Weighted directed graph [34].

Central

Namin et al. (2014)
Email:

Comput Sci Eng 1(1): 1002 (2014) 7/15

body of the loop without mixing up its iterations. The general
idea is to remove the inter-iteration dependencies, or those edges
with non-zero weight, () 0≠w e , and then simply use acyclical
scheduling method. From here the scheduler can then calculate
the makespan of () ()():σ λ σ∈= +a v V amax v d v and the cyclic
schedule σ by:

() (), , ,σ σ λ∀ ∈ ∀ ∈ = +aüüü N

The other method mixes up the iterations of the loop in such
a way that the dependencies are still kept but minimized the
average makespan. If given an unlimited number of resources,
then the minimum makespan for a cyclic schedule is the

maximum cyclic duration to distance ratio, () ()
()

 ñ =
d C

C
w C

where
C is any cycle in G [35].

Potential graphs

When there exists a cycle within a task graph, it introduces
additional complexities that scheduling algorithms must deal
with. By disregarding the edges of G where () 0≠w e , which
removes the inter-iteration dependencies, developers are then
able to use acyclical scheduling algorithms within the body of the
loop. Schedulers can also take the reduced dependency graph
and transform it into a “potential graph.” A potential graph

(), ,=G V E w is a task graph where : →w E Z defines the edge
weights and the schedule σ for G is a function :σ →V N such
that all potential inequalities are satisfied:

() () () ()e u,v E, u w v∀ = ∈ σ + ≤ σe

A potential graph primarily differs from a reduced
dependency graph in that it contains a source task s. The source
task has a start time σ (s)=0 and duration d (s)=0. The source task
is essentially a jumping off or starting point for the scheduling
algorithm.

Using the source task, scheduler algorithms map the potential
inequalities in the reduced dependency task graph to a potential
graph. These scheduling algorithms first re-introduce all of the
original dependencies as edges e where if v depends on µ the
edg e=(u,v) but set the weight w(e)=p(u). These edges provide
the inequality: σ (u) +p (u) ≤ σ (v). The dependency edges for the
ready time r(v)of the tasks, or the time that the task has to wait
before it is able to start, are added by the algorithm next. The
algorithm assigns this edge, e=(s,v) the weight w(e)= r(v)and in
return, it provides this inequality: σ (s) +r(v) ≤ σ (v), and since σ
(s) = 0 this satisfies the constraint that r(v) ≤ σ (v). The final set of
dependency edges the algorithm adds are for the due time, d(v),
which is the time that the tasks much be executed before. For this
edge, e(s,v) the algorithm assigns the weight w(e)= d(v), and the
resulting inequality is: σ (u) +p (u) – d(v)≤ σ (s)=0.

By introducing all of these different edge dependencies,
cycles develop within the potential graph. Like a reduced
dependency graph, having these cycles makes it difficult to easily
determine if there is a valid schedule for the graph that obeys
all of the inequalities. It has been shown that as long as all the
simple circuits in the potential graph have nonpositive weight,
there exists a schedule that obeys all of the inequalities [34].

Energy aware task scheduling

The goal of most scheduling algorithms is to minimize

application execution time. Minimizing application execution
time normally comes at the cost of powering additional processors
or increasing the operating frequency of those processors. As
previously stated, getting back to an idle state is a great way of
reducing energy costs, but adding the cost of powering additional
processors or having them run at higher speeds can offset the
power gains of a quick return to idle. For this reason, several
scheduling algorithms have been put forth to try and find the
balance between quick executions and power conservation [21].

When scheduling each task in a task graph, the possibility
exists that a task has more than enough time to execute. This
extra time would be when the ready time plus the duration of
a task is less than its due time, () () () + <r v p v d v scheduling
techniques that seek to reduce power usage without negatively
impacting performance use this time by reducing the operating
frequency of the processor these tasks run on. By reducing the
speed at which the task executes, the schedule increases the
duration of the task eating up the excess time and in turn is able
to reduce the amount of energy the task uses [18,19].

CPU load balancing presents another great way in which
scheduling algorithms can decrease energy usage. CPU load
balancing does not directly affect processor energy usage, but
instead it is a means by which scheduling can reduce the cooling
demands of the CPU. The more work a processor does the hotter it
becomes, so CPU load balancing seeks to reduce this heat buildup
by spreading out the work load across multiple processors. CPU
load balancing does cause performance degradation due to the
increased context switching and decrease in cache performance
[36].

MODELING CPU POWER USAGE
Power and energy conscious computer and software designs

look for ways in which power usage can be efficiently balanced
with performance. For this reason, computer scientists have
begun looking for ways in which they can model computer
energy consumption. These models give them the ability to
gage whether a particular energy saving technique provides the
benefits necessary to overcome the loss in performance. Ge and
Cameron proposed an energy model that showed the effects of
changing the CPU operating frequency [21]. This model provides
a great argument for not operating CPUs at the absolute highest
possible speeds. They were able to prove that at a cost of only
1% in performance loss a savings of over 30% could be saved in
energy usage by plainly reducing the CPU operating frequency.

Another method by which CPU energy usage can be modeled
is by estimating the power usage of each individual instruction
[37]. Measuring the power used by each instruction an application
uses will give a fairly accurate model the energy a CPU will use
while running the application. Utilizing the information provided
by instruction level power analysis, application developers
can optimize their applications to use less power intensive
instructions thereby reducing the amount of energy their
applications consume.

Energy ratio model

most CPU power models require that those who use them be
able to know intimate details about how much power the CPU

Central

Namin et al. (2014)
Email:

Comput Sci Eng 1(1): 1002 (2014) 8/15

will use or be able to affect the physical properties and settings
in some way. Unless a software developer is working directly
with the hardware designers of a system, he/she will probably
not have the required knowledge of the CPU. At the same
time, most software developers will not be able to change the
physical settings of the CPU due to security and system stability
restrictions placed by the OS. For this purpose, we put forward
a CPU energy model based off of the CPU utilization and the
operating frequencies.

CPU power usage

Power is the rate at which a task uses energy, i.e. ∆
=
∆
EP
t

,

where the energy change the system under goes is, ∆E and ∆t is
the time it takes to complete the task. From this then the energy
used by a system can be derived as the amount of power used
over a given amount of time, *∆ = ∆E P t [38]. If the amount of
power a device uses varies with time, then the energy usage is

() *=dE P t dt . By taking the integral, we get the total energy
used by the system as () = ∫E P t dt .

In a multiprocessor system, each processor will have its own
power usage equation and therefore be using a different amount
of energy. This means that the total energy consumed by the CPU
is the sum of each of the processing cores’ energy usage, giving

us the following energy equation ()
0=

=∑∫
N

i
i

E P t dt , where N is the

number of cores in the CPU, with () iP t being the power equation
for the i-th processing core.

This equation shows that there are two different ways in which
energy usage can be decreased. The first way is to reduce power
used while completing a task and the second way is to reduce
the time it takes to complete the task. Computer researchers and
designers have put more work on the physical properties of a
CPU because by doing so energy can be saved no matter what the
software running on it does. As previously mentioned, software
developers can still have a significant impact on the energy usage
of the devices their applications run on [16,25].

We can now use Ohm’s law to get a good estimation of the
power used by a CMOS chip. CMOS chips, upon which CPUs are
generally based, use energy by charging and discharging set of
capacitors, the power used to do so is given as 2 =P CV F , where C
is the capacitance, V is the voltage, and F is the frequency at which
the chip changes state [39]. Of the three properties that make
up this equation, only frequency can be altered without making
physical changes to the CPU or its settings. For this reason, most
power saving designs utilizes lower operating frequencies. Using
the equation for the power of a CPU transforms the equation for

the energy used by a CPU into ()2

0

=

=∑∫
N

i
i

üüü .

The clocks that drive most processors are not capable of
continuous frequency ranges, but are restricted to discrete
values at which they can operate in order to keep their design
simple and be cost effective. Limiting the operating frequencies
means that each processor will only be operating in discreet
power states, and the energy equation becomes:

N S
2

j ij
i 0 j 0

E CV f t
= =

=∑∑

where N is the number of processors, and S is the number of
states the processor operates in.

The ability to set the processor’s frequency to different values
has allowed operating system developers to have a great amount
of control over power consumption. Unfortunately, as previously
stated, applications running in user space do not have these
capabilities due to security and system stability concerns. Since
user space applications are restricted from having the ability to
alter the operating frequency, software developers’ only means
of controlling the CPUs’ energy usage is by altering the CPU
utilization of each processor.

This means that developers can only affect the energy
consumption of their application by changing how much time
each processor is in use. This alters the energy equation to only
having two CPU states that is must be concerned with, ON and
OFF. Most processors, especially those that are ACPI compliant,
have more than just two operating states. How many of those
operating states that get used depend on what the operating
system does when halting a process thread or when a thread
waits on data accesses. Since how these CPU states get used
are not within the capabilities of most software developers, we
consider all the non-active states the same as if the CPU was not
in use. With the model only considering two states (ON and OFF)
and also assuming that the processors are homogenous causes
the energy equation to become:

2

0

 ()
=

= +∑
N

ON iON OFF iOFF
i

E CV f t f t

fon and foff being the frequency of the processors in the ON and
OFF state respectively, and ti0n and tioff as the time each processor
spends in each state.

Sequential application power usage

A sequential application can only utilize a single proces-
sor. With only one processor to consider the energy used is then

2 ()= +ON ON OFF OFFE CV f t f t . Since the application is only using one
processor, the other N-1 processors are sitting idle and are operat-

ing at the OFF frequency for the duration of the execution. The en-

ergy these processors use is ()
1

2

0

−

=

= +∑
N

OFF iON iOFF
i

E CV f t t . Without any

changes between idle processors’ energy usage, the summation re-
duces to simply () () * 1+ −OFF ON OFFf t t N , meaning that the energy
used by the idle processors is ()2 * (1)= + −OFF ON OFFE CV f t t N . For
a sequential application the total energy used by the CPU is there-
fore:

() ()2 2 *(1)= + + + −ON ON OFF OFF OFF ON OFFE CV f t f t CV f t t N

By combining and rearranging terms, then using algebraic
simplification, we can reduce the CPU energy used by a sequential
application on a multiprocessor system to:

()2 (())= + + −OFF ON OFF ON ON OFFE CV Nf t t t f f

Parallel application power usage (applying amdahl’s
law)

Parallel processing researchers and developers use Amdahl’s
law to determine the theoretical limit to the performance an
application can experience when parallelized. Amdahl’s law

Central

Namin et al. (2014)
Email:

Comput Sci Eng 1(1): 1002 (2014) 9/15

states that the speedup of an application is the ratio of sequential
to parallel execution time [40]. The goal of our model is to
gage the improvement of a parallel application’s energy usage
compared to its sequential equivalent when ran on the same
number of processors. To do this, we applied Amdahl’s law to the
CPU energy equations we derived. We look at the ratio between
sequential and parallel energy usage on N processors, i.e. ERN.
This ratio gives us

()2

2
0

(())

()
=

+ + −
=

+∑
OFF ON OFF ON ON OFF

N
ON iON OFF iOFFi

CV Nf t t t f f
ERN

CV f t f t

Since CV2 is constant,

()

0

(())

()
=

+ + −
=

+∑
OFF ON OFF ON ON OFF

N
ON iON OFF iOFFi

Nf t t t f f
ERN

f t f t

An Example

An example of how to apply this model would be to see
the energy savings that would be gained by parallelizing an
application on a quad-core processor. For this example the
processors have an active frequency of 2.5 GHz and an idle
frequency of 1 GHz. Assuming that the sequential version takes 2
minute to execute, where for 1.5 minutes the processor is active
and the remaining 30 seconds it is inactive. For the parallelized
version, it uses all 4 processors for 30 seconds and is idle for 15
seconds per processor. This gives us an ERN of 1.71 meaning
that the sequential version of the application uses over 1 ½
times the energy as the parallel version. The Amdahl ratio for
this application is 2.67, which means when we compare the
ERNS, we see that the energy savings are being out paced by the
performance gains of parallelization.

CASE STUDIES

We now present two different task scheduling case studies
and a set of task graph schedulers to compare the standard speed
up ratio to the parallel energy efficiency ratio. The reason we
look at both is to gage how well the improvement in performance
translates to energy consumption reduction. We believe that just
because a particular scheduling algorithm and parallelization
method performs better that does not necessarily mean its
performance gains outweigh the extra energy costs to do so.

Subject applications

We chose these particular applications to present as
examples of how to apply the energy efficiency ratio due to the
different parallelization issues they contain. The first application
is an exercise that has been used to demonstrate how a cyclic
scheduler works [34], but does not actually do anything useful.
The other application is a chemistry application that calculates
the total force between a set of molecules.

Cyclic loop: Below is the code that is used to demonstrate
cyclic dependencies and how different task schedulers can
schedule their tasks [34]. The cyclic dependencies give us the
ability to look at schedulers designed to handle this special type

of problem and how well they perform.

()

[] []
[] [] []
[] []
[] []
[] []()
[] [] []()

for k 0; k N; k
{
 A : a k c k 1 ;

 B : b k a k 2 * d k 1 ;

 C : c k b k 1;

 D : d k f k 1 / 3;

 E : e k sin f k 2 ;

 F : f k log b k e k ;

}

= < + +

= −

= − −

= +

= −

= −

= +

As we examine this code segment, we can see that there are
both inter- and intra-iteration dependencies. For example, one of
the inter-iteration dependencies is between tasks A and C. The
operation A writes the value of c[k-1] to a[k], and so therefore
C must precede A+1. Similar dependencies exist throughout the
code segment. Even though there are some schedulers that will
try to schedule the task across multiple iterations, we have to
start the loop at k=2 otherwise we will end up with negative array
indices.

From this code segment we construct the reduced dependency
graph as show in Figure 5. The values in boxes near each task
label are the duration or weight of the generic tasks. The other
numbers near the edges are the weight of each edge. Looking at
Figure 5 one can clearly see that the dependencies form three
separate cycles: A A→B→C→A, B→F→D→B, and E→F→E. E We
can also see that the only intra-iteration dependencies are B→C ,
B→F and E→F.

Force calculator: the force calculating example is a simple
function that contains a set of nested FOR loops iterating across
an array. The inner FOR loop performs some simple mathematical
calculations on a 1-D array, iterating up to the current value
of the outer loop’s index. The calculation within the inner loop
starts with the difference between the elements pointed to by the
indexes of the two loops and performs some calculations which
are then subtracted from the element pointed to by the inner
loop’s index and added to the outer loops indexed value.

With the Force Calculation function, the outer loop appears to
be a perfect candidate for parallelization. Looking closer however
reveals that there are dependencies on values that would be
calculated in prior iterations of the loop. As part of the process
of parallelizing the loop, we will have to find a way to eliminate
this dependency. To keep our example simple, we focused our
parallelization efforts to the inner loop instead.

Figure 5 Reduced dependency graph of sample code segment [34].

Central

Namin et al. (2014)
Email:

Comput Sci Eng 1(1): 1002 (2014) 10/15

To parallelize the inner loop we had to take into account the
set of calculations that is added to the element indexed by the
outer loop. Summation parallelizations are a trivial matter and
required only a simple reduction to complete. The ease by which
we could tile the inner loop across multiple threads provided
us with a simple method for parallelizing this function. Figure 6
shows the resulting task graph of parallelizing the inner loop and
reducing afterwards as part of the outer loop. Index i is the outer
loop’s index, while j is used for the inner loop with the calc nodes
being the calculations done inside. The sum nodes represent the
summation reduction that is done at the end of each iteration of
the outer loop.

Task schedulers

The task schedulers we implemented were inherited a central
scheduler class. Each of the scheduling algorithms we used in
our schedulers use Graham’s idea of mapping tasks to a reduced
dependency task graph. Each task is included as an instance of the
Task class, and it is the instances of this class that the scheduler
uses to generate the schedule for the order the tasks will run. The
instances of the Task class contain their task’s duration or weight
in addition to pointers to both their dependent tasks and their
predecessor tasks. This allows them to be able to calculate their
critical path and their dependent path values. This also provides
them with the means to insure that their dependent tasks have
been executed before they are.

The scheduler classes contain a list of all the tasks that it must
schedule and a list of all the available threads. Each of the thread
objects maintain a queue that contains each scheduled task and
the time at which it is to start. As each task is scheduled, the
scheduler will add it and its start time to the queue for the thread
it is to be executed on. In most cases, the start time of each task is
equal to the maximum schedule time () ,σ v k , and duration, d(v)
of the intra-iteration dependencies, or those dependencies that
have zero weight edges. If a task is to be queued up on a thread
that is not yet ready, determined by the start time of the task, the
scheduler then places it in the queue starting immediately after
the previous task in that thread’s queue. Schedule time, σ, of each
task is:

() () () (){ }, , | ,0σ σ= + ∈ ≤ ≤v max P t u k d u u D k N

Where D. is the list of tasks v is dependent on and P(t) is
the current scheduled time of the selected thread. Each of the
different scheduling techniques we used utilized different
methods for deciding what order each of the tasks was scheduled
and which of the dependencies were included in D.

Since the weight of each task is an estimate, the scheduler
needs to keep track of the estimated time that the application is
at. It does this by having each task signal when it completes. The
scheduler adds the start time and duration of the task to get the
task’s completion time. If the task’s completion time is greater
than its current estimated time, it signals all the threads with the
new estimated time.

As mentioned earlier, all of the threads maintain a queue
of tasks it is to execute and the start times for each of those
tasks. Each thread is comprised of a WHILE loop, with the exit
condition set by the Thread object’s Join method. Inside the loop,
the thread waits until there are tasks in its execution queue and
for the signal that the estimated application time is greater than
its current task’s start time. Before each task is executed by the
thread, it is removed from the thread’s queue. Once the queue is
empty, the thread waits for additional tasks to be added or the
signal that it is done and ready to rejoin the main thread.

Each scheduler we implemented inherits the basic methods
for managing task and thread objects. The different schedulers
are then only responsible for the actual scheduling of the tasks.
The base scheduler object assumes that the task graph provided
is a reduced dependency task graph and that it will be executed
a set number of times, so it accepts as part of its constructor
the number of iterations the tasks will be executed. It is then
left up to the actual scheduling implementations to actually use
this value or disregard it and assume that the task graph is an
acyclical graph.

We developed four different task schedulers. Each of them is
unique enough to provide a good look at the information provided
by the energy model. We called the schedulers the Critical Path,
Bottom-Up, First In/First Out, and the Bellman-Ford.

We previously mentioned that when there exists a cycle
within a task graph, it introduces additional complexities that
scheduling algorithms must deal with. One method that we used
in all but the Bellman-Ford scheduler is to disregard the edges of
G where () 0≠w e , this removes the inter-iteration dependencies
and allows us to use acyclical scheduling algorithms within the
body of the loop.

Critical path scheduler: The first method we used for
ordering the tasks was by their length of each task’s critical path.
Since the critical path is defined as the longest path from each
task to the end or stopping node, this method is classified as an
acyclical scheduling method. This means that in order for this to
work on a cyclical task graph, all non-zero edges are ignored. The
critical path of each task is lazy loaded using a recursive depth-
first search of the dependent tasks. Figure 7 shows a portion of
the schedule that the critical path scheduler generated for the
cyclic loop application.

The critical path scheduling method has two advantages: Figure 6 Force calculation task graph.

Central

Namin et al. (2014)
Email:

Comput Sci Eng 1(1): 1002 (2014) 11/15

simplicity and a guarantee of obeying dependencies. The
simplicity comes from the fact that tree traversal algorithms
are well known and easy to understand. The second advantage
of dependency guarantee comes from the fact that by sorting by
critical path means that since the tasks that need to be executed
first will be, as they will have the largest critical path.

Bottom up scheduler: The next scheduler that we
implemented organizes the tasks by looking at the path from
each task back to the top of the task graph: what we call the
dependent path. This is the opposite of the critical path. The fact
that looking from the bottom up means that the possibility exists
that the generated schedule will do so in a manner that does not
maintain the dependencies between the tasks.

To make sure that the dependencies between tasks are kept,
the Bottom Up scheduler schedules the tasks recursively. The
order the scheduler looks at each task for scheduling is by the
value of the dependent path. Before each task is scheduled, its
dependent tasks are scheduled, also by their dependent path.
Each task is scheduled this way until all the dependent tasks are
scheduled, and then the depending tasks are. Figure 8 shows the
schedule that the bottom-up scheduler generated for the cyclic
loop, which for this particular problem is identical to the critical
path. This is due to the fact that both schedule by sorting the
longest paths.

First come scheduler: The least complex of all the schedulers
is a first in first out scheduler. It assigns each task to a thread
in the order it was added to the scheduler. It does not try to
rearrange the tasks or do anything other than simply put each
task on the next available thread. By scheduling the tasks in the
order they were added to the scheduler, the first come scheduler
gives all the control over the execution order to the developer.

Figure 9 shows a portion of the resulting schedule that the first
come scheduler generated.

Bellman-ford scheduler: The Bellman-Ford scheduler is by
far the most complex, but it promises to produce a schedule with
a makespan closest to the theoretical minimum. Unlike the other
algorithms, the Bellman-Ford algorithm schedules the tasks
across loop iteration.

The Bellman-Ford method works by first identifying the
cycles within a potential graph and then using that information
to calculate the values necessary for generating the schedule. To
find the cycles within the task graph, we use Johnson’s algorithm
[41] for finding all of the elementary cycles within a graph [41].
Once the cycles have been identified, each cycle’s duration to
distance ratio, i.e. ρ(C), is calculated. The scheduler then uses
ρ(C), to adjust the weights of the edges in the potential graph.
Finally, the scheduler uses the Bellman-Ford method to calculate
the longest path from that starting node to each task on the graph.

The Bellman-Ford algorithm normally is used to find the
shortest path, so using it to find the longest path is a slight
deviation that requires flipping the distance check from less than
to greater than. The length of each of these paths is then used to
determine when to start each task. The Bellman-Ford algorithm
works best when there are an unlimited number of processors,
but as this is unlikely to happen, the scheduler uses the next
free processor if there are no free processors when a task is to
be started. Figure 10 shows the portion of schedules that the
Bellman-ford scheduler generates.

Applying the energy model: We now present how we
applied our Energy Ratio model to the case studies. We look at
both Amdahl’s ratio and our own to see how much energy each
application saves when parallelized. We also examine the energy

Figure 7 Critical path schedule.

Figure 8 Bottom-up schedule.

Figure 9 First come schedule.

Central

Namin et al. (2014)
Email:

Comput Sci Eng 1(1): 1002 (2014) 12/15

savings each scheduler offers and if their performance gain is
justified. Using this information we make a decision as to how
best to parallelize each application to both balance performance
with energy savings.

As ERN is based off of Amdahl’s law, its values change much
in the same way as those for Amdahl’s. Increasing the energy
used by the sequential version of an application, or reducing the
energy used by the parallel version will increase the value of ERN.
In addition, like Amdahl’s law, the number of processors is the
maximum value of ERN

Our testing setup was a laptop computer with an Intel Core
I3 processor. Like all ACPI compliant processors, this processor
has several different operating frequencies. We used Power Top
[42], which reads the ACPI information from the kernel and
outputs it into a human readable format, to identify the different
operating frequencies. For this processor the active frequency
was identified as 2.97 GHz and the lowest idle frequency as 913
MHz.

Cyclic loop: We ran the schedules and estimated the power
usage for cases when two and four processors are utilized. We
stopped at four processors due to the fact that both scheduling
algorithms did not scale past four processors. Table 1 shows the
CPU utilization each algorithm used when running the application
on two and four processors. From looking at this table, we can
assume that for this example the Bellman-Ford schedule will use
less energy due to its higher CPU utilization.

Table 2 reports the energy efficiency ratios of two algorithms
when compared to the sequential case. By looking at Figure 2 it
would appear that we are getting poorer results by attempting to
run each schedule on two processors as opposed to four. Actually
considering that the theoretical maximum efficiency equals the
number of processors we run the application on; running our
application on two processors gets us closer to this value. Table
2 shows us that when we run the application on four processors
we are not even able to achieve half of the theoretical maximum,
which like Amdahl’s law is equal to the number of processors
available. While at the same time, when ran on two processors we
are getting between 60% and 70% of this maximum. The closer

we get to the maximum possible efficiency ratio, the better our
energy usage will be.

It becomes apparent when looking at these three tables
that overall CPU utilization plays a major part in how well an
application performs and how much energy it uses. When this
application was run on four processors each scheduler, except
for the Bellman-Ford, used the processors a different amount
but had the same average CPU utilization. This in turn resulted
in having identical performance ratios. Clearly this demonstrates
that when an application is running it will use less energy and
perform better if the application fully utilizes the CPU cycles
made available to it.

One of the points that Steigerwald et al make is that the
energy efficiency of a computer reaches its maximum as the work
load approaches 100% device utilization [25]. The reason for this
is that even though a CPU or other part of the computer might
be idle, it still uses energy. Keeping an idle device powered up
is done so that it remains responsive and this in turn reduces
latency. Also, if a device enters and exits an idle state repeatedly,
powering it up and down not only increases the total energy
usage but also can cause additional wear. Even still, like lights
lighting empty rooms, powered up idle devices simply waste
energy. It is this reason that the ACPI dictates that the longer a
device remains idle, the lower the power state it enters.

Force calculator: The nature of the force calculation
application presented some very interesting results with the
schedulers used. Two aspects of the task graph we generated
caused the ratio values to not vary between the different
schedulers. First is the fact that there are no cycles in the graph,
this means that there is no special cyclic handling necessary.
Then the summation nodes limit how the application can be
parallelized to only parallelizing the iterations of the inner loop.

With the ratio values not varying between the different
schedulers our choice of scheduler will depend on how much
overhead each adds to the application. Since we are looking at
energy usage and execution time of the application, those are our
biggest considerations. We might also rank our schedulers by
memory usage, complexity or some other metric. The schedulers
weren’t parallelized; therefore their energy usage directly

Figure 10 Bellman-Ford schedule.

Algorithm Four Processors Two Processors
1 2 3 4 Avg. 1 2 Avg.

Bellman-Ford 91.67% 63.64% 56.82% 68.18% 70.08% 97.38% 96.34% 96.86%
Bottom-Up 100.00% 25.00% 25.00% 4.17% 38.54% 100.00% 54.17% 77.09%
Critical Path 100.00% 25.00% 25.00% 4.17% 38.54% 100.00% 48.00% 74.00%
First Come 70.83% 16.67% 25.00% 41.67% 38.54% 100.00% 54.17% 77.09%

Table 1: Cyclic loop CPU utilization.

Central

Namin et al. (2014)
Email:

Comput Sci Eng 1(1): 1002 (2014) 13/15

correlates to the amount of time they add to the application’s run
time.

Table 3 gives the time each scheduler took to generate the
schedule for the force calculation application. Besides being
the most complex and adding the most overhead via code and
memory usage, the Bellman-Ford took two orders of magnitudes
longer to generate its schedule. Its run time alone makes it a
poor candidate for parallelizing an application like this. On the
other hand, the simplest scheduler took the least amount of time
to generate its schedule, making it the best choice of the four
schedulers.

The way we setup the task graph for the force calculation
application means that the application parallelizes across an
almost unlimited number of processors. Being able to parallel
across a large number of processors allowed us to look at this
application’s performance and energy usage as would be seen
inside a data or high performance computing center. We are
also able to gain a greater insight into the effects of parallelizing
across a large number of processors. Figure 11 shows the results
for the two ratios as we ran the force up to 32 processors.
When we examine Figure 11 it become clear that after a certain
number of threads there is no longer any performance gains
to be achieved by adding more threads. Like not being able to
parallelize the cyclic loop application past four processors, adding
more processors past this point only wastes those resources as
the application is not able to fully utilize them. Additionally, our
energy efficiency ratio moves further and further away from the
maximum the more processors that are made available to the
application.

Looking at these results we can determine that after about
16 processors we are no longer able to achieve any higher
performance gains and should not need more than that to run this
application. Another observation we get from Figure 11 is that if
we can sacrifice performance, then our energy conservation will
be better when we run this application on fewer processors.

Further observations

After we completed our work with the two applications we
continued to look at the behavior of the energy ratio. We were
particularly interested in two extremes. The first we looked at

is what happens when a device has the worst possible power
management setup, or when the device does not have an idle
power state to go to. We also looked at how our energy ratio
plays out when a device simply is turned off when it becomes
idle. Both of these situations provide insight into how we should
be designing our computational devices in the future.

No idle state: Our energy efficiency ratio has an interesting
characteristic when foN = foff the equation reduces to Amdahl’s
speed up ratio, mentioned earlier. By ERN being equal to
the speedup ration, it tells us that if the frequency of the idle
processors does not change, then the power improvements are
completely dependent on being able to complete the tasks as
quickly as possible.

With modern operating systems and processors, this should
not usually be the case, unless the power management settings
are set in such a way that the processors never go into an idle
state. Even if the processors are set to never go into an idle
state, then like what was stated earlier we want to complete the
application run as quickly as possible. This still does not change
that developers need to be optimizing their applications in order
to reduce the energy usage.

Turning off idle processors: The other scenario we looked
at is when the idle processors are turned off. When this happens
foff is zero, and the ratio becomes:

0

()
()

=

=
∑

ON ON
N

ON iONi

t fERN
f t

Now if we assume that the total time it takes to execute all

the tasks remains the same, then () ()
0

=

=∑
N

ON iON
i

t t and EN=1 Or

in other words if the idle processors are completely turned off,
then the power consumption of an application does not change
between the parallel version and its sequential equivalent as long
as the total execution time on all processors remains constant.

By having no improvement in the power consumption when
parallelizing tells us that when the run time of the application
remains fixed, the CPU utilization does not matter. At this point it
becomes no longer necessary to add additional processors to the
application solution. This means that by reducing the number of
processors to the bare minimum necessary to complete the tasks
on time, we can increase the CPU utilization for the duration
of the application run, and this becomes the best energy usage

Algorithm Four Processors Two Processors

ERN Amdahl ERN Amdahl

Bellman-Ford 1.930 2.803 1.408 1.937

Bottom-Up 1.357 1.542 1.266 1.542

Critical Path 1.357 1.542 1.241 1.480

First Come 1.357 1.542 1.266 1.542

Table 2: Cyclic loop performance ratios.

Algorithm Run Time(s)

Bellman-Ford 280.198

Bottom-Up 9.155

Critical Path 1.564

First Come 1.507

Table 3: Scheduler’s run times.

Figure 11 Parallelization ratios for the force calculation application.

Central

Namin et al. (2014)
Email:

Comput Sci Eng 1(1): 1002 (2014) 14/15

solution.

One example of where designers are placing too many CPUs
in devices is the newer model of smart cell phones. Cell phone
manufacturers have begun to increase the number of cores in
a cell phone’s CPU, much like those in traditional computers
and servers. Unfortunately, applications on cell phones are
fixed duration applications, so it does not matter how long an
application takes to run. At the same time, most cell phones do not
allow for multitasking, and since the applications are designed to
run with limited resources the benefit to having additional CPUs
is fairly limited.

CONCLUSION
As computer technology has progressed and become more

inexpensive and mobile so has the need for energy conscious
designs increased. Most of the done towards making devices
use less energy is centered around improving the hardware, but
software can and does play a major role in how much energy a
device uses. If software developers are not trying to keep their
applications optimized, then ultimately they are contributing to
the excess usage of energy on the devices their programs run on.

One of the ways in which hardware has improved over the
past few years is the addition of more than on processing core in
CPUs. Multicore processors have the potential for both increasing
the performance of an application and decrease its energy
usage. Knowing the best method for parallelizing an application
can be treacherous, as different parallelization methods are
not guaranteed to give the performance desired and if care is
not given can cause unanticipated errors. It is this reason we
presented a ratio that software developers can use to gage if the
performance gains achieved through the various parallelization
methods justify the energy costs and increased application
complexity.

Using the data from both Amdahl’s ratio and our own energy
efficiency ratio clearly shows that the greater the CPU utilization,
the greater the energy efficiency an application will have. Even if
the CPU were to use the same amount of energy when executing
a parallelized version of the application as its sequential version,
the less time it takes then the entire computer system will expend
less energy overall.

By simply reducing the time that the application takes to
execute, the sooner the CPU will return to an idle state. This
“race to idle” allows a computer to return to the more energy
efficient state sooner and thereby save energy [26]. At the same
time, the more CPUs that are in use, then the more power will be
used. Using more CPUs would lead one to believe that the system
would be using more energy. On the contrary, by utilizing more of
the processors an application will be more likely to finish quickly
and leave fewer processors idle wasting energy.

Future work

This energy efficiency ratio presents a lot of good information
for developers to use in making the decision to parallelize their
applications. This does not mean that there are not ways in
which it could be improved. A lot was left out in order to keep
thing simple and easy to use or to keep it as independent of the
hardware as possible.

One thing that was left out of the energy efficiency ratio
is the relationship between the frequency of the processor’s
clock and the voltage the processor needs to maintain stability.
Also the energy efficiency ratio does not take into account the
energy usage of anything other than the CPU. The CPU actually
account for only a small percentage of the overall energy used
by a computer. Other components, such as the power supply and
video adapter, use extremely more power than the CPU. In fact,
for mobile devices the screens use the most energy, and users are
advised to keep their screens off as much as possible.

REFERENCES
1. Moore GE. Cramming more components onto integrated circuits.

Electronics. 1965; 114-117.

2. Rasberry Pi Foundation. August 2012. [Online].

3. Basheda G, Chupka MW, Fox-Penner P, Pfeifenberger JP, Schumacher
A. Why Are Energy Prices Increasing? 2006.

4. Glanz J. Google Details, and Defends, Its Use of Electricity. New York
Times. 2011.

5. Cauchon D. Household electricity bills skyrocket. USA Today. 2011.

6. Google Inc. Google Announces Fourth Quarter and Fiscal Year 2011
Results. 2011.

7. Murugesan S. Harnessing Green IT: Principles and Practices. IEEE IT
Professional. 2008; 24- 33.

8. Energy Star. 2011. [Online].

9. Energy Star. Energy Star and Other Climate Protection Partnerships
2010 Annual Report. Washington DC. 2010.

10. Hewlett-Packard, Intel, Microsoft, Pheonix Technologies, Toshiba.
Advanced Configuration and Power Interface Specification Rev 4.0a.
2010.

11. Lake L, Pease L. Energy Crisis in California. Pepperdine School of
Public Policy. 2001.

12. Amin SM, Wollenberg BF. Toward a smart grid: power delivery for the
21st century. IEEE Power & Energy. 2005; 3: 34-41.

13. Brooks D, Tiwari V, Martonosi M. Wattch: a framework for
architectural-level power analysis and optimizations. ACM SIGARCH
Computer Architecture News. 2000; 28: 83-94

14. Overa A. Ubuntu 11.04 (Natty Narwhal), Reviewed In Depth. 2011.
[Online].

15. Larabel M. The Leading Cause Of The Recent Linux Kernel Power
Problems. Phoronix. 2011. [Online].

16. Larabel M. A Proper Solution To The Linux ASPM Problem. Phoronix.
2011. [Online].

17. Cho S, Melhem RG. Corollaries to Amdahl’s Law for Energy. IEEE
Computer Architecture Letters. 2008; 25-28.

18. Yao F, Demers A, Shenker S. A Scheduling Model for Reduced CPU
Energy. 36th Annual Symposium on Foundations of Computer Science.
Milwaukee, Wisconsin, USA. 1995.

19. King D, Ahmad I, Sheikh HF. Methods for optimizing the performance
of directed acyclic graphs operating. Sustainable Computing:
Informatics and System. 2011; 1: 99-112.

20. Rountree B, Lowenthal DK, Schulz M, de Supinski BR. Practical
performance prediction under Dynamic Voltage Frequency Scaling.
Green Computing Conference and Workshops (IGCC). Livermore, CA,
USA. 2011.

http://www.raspberrypi.org/faqs
http://www.nytimes.com/2011/09/09/technology/google-details-and-defends-its-use-of-electricity.html?_r=0
http://www.nytimes.com/2011/09/09/technology/google-details-and-defends-its-use-of-electricity.html?_r=0
http://usatoday30.usatoday.com/money/industries/energy/story/2011-12-13/electric-bills/51840042/1
http://investor.google.com/earnings/2011/Q4_google_earnings.html
http://investor.google.com/earnings/2011/Q4_google_earnings.html
http://www.pitt.edu/~dtipper/2011/GreenPaper.pdf
http://www.pitt.edu/~dtipper/2011/GreenPaper.pdf
http://www.energystar.gov/about/history
http://www.energystar.gov/ia/partners/publications/pubdocs/2010 CPPD Annual Report.pdf
http://www.energystar.gov/ia/partners/publications/pubdocs/2010 CPPD Annual Report.pdf
http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf
http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf
http://www.acpi.info/DOWNLOADS/ACPIspec40a.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1507024&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1507024
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1507024&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1507024
http://courses.cs.washington.edu/courses/cse591n/07sp/papers/p83-brooks.pdf
http://courses.cs.washington.edu/courses/cse591n/07sp/papers/p83-brooks.pdf
http://courses.cs.washington.edu/courses/cse591n/07sp/papers/p83-brooks.pdf
http://www.tomshardware.com/reviews/ubuntu-11.04-natty-narwhal,2943.html
http://www.tomshardware.com/reviews/ubuntu-11.04-natty-narwhal,2943.html
http://www.phoronix.com/scan.php?page=article&item=linux_2638_aspm
http://www.phoronix.com/scan.php?page=article&item=linux_2638_aspm
http://www.phoronix.com/scan.php?page=article&item=linux_aspm_solution
http://www.phoronix.com/scan.php?page=article&item=linux_aspm_solution
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4407677&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4407677
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4407677&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4407677
http://graal.ens-lyon.fr/~lmarchal/scheduling/Yao-FOCS95-Energy.pdf
http://graal.ens-lyon.fr/~lmarchal/scheduling/Yao-FOCS95-Energy.pdf
http://graal.ens-lyon.fr/~lmarchal/scheduling/Yao-FOCS95-Energy.pdf
http://www.sciencedirect.com/science/article/pii/S2210537911000242
http://www.sciencedirect.com/science/article/pii/S2210537911000242
http://www.sciencedirect.com/science/article/pii/S2210537911000242
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6008553&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6008553
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6008553&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6008553
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6008553&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6008553
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6008553&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6008553

Central

Namin et al. (2014)
Email:

Comput Sci Eng 1(1): 1002 (2014) 15/15

21. Ge R, Cameron KW. Power-Aware Speedup. IEEE Parallel and
Distributed Processing Symposium. 2007.

22. Ge R, Feng X, Feng W-C, Cameron KW. CPU MISER: A Performance-
Directed, Run-Time System for Power-Aware Clusters. International
Conference on Parallel Processing. 2007.

23. Song S, Su C-Y, Ge R, Vishnu A, Cameron KW. Iso-Energy-Efficiency:
An Approach to Power-Constrained Parallel Computation. IEEE
International Parallel & Distributed Processing Symposium (IPDPS).
2011; 128-139.

24. Steigerwald B, Lucero CD, Akella C. Agrawal AR. Energy Aware
Computing. Intel. 2012.

25. Steigerwald B, Lucero CD, Akella C. Agrawal AR. Impact of Software on
Energy Consumption. 2011.

26. Steigerwald B, Lucero CD, Akella C. Agrawal AR. Writing Energy-
Efficient Software. 2011.

27. Naik K, Wei DSL. Software implementation strategies for power-
conscious systems. Mobile Networks and Applications. 2001; 6: 291-
305.

28. M. Wolfe, “More Iteration Space Tiling,” in ACM/IEEE conference on
Supercomputing , New York, NY, USA, 1989.

29. Deborah T. Marr, Frank. B, David LH, Glenn Hinton, David A. Koufaty, et
al. Hyper-Threading Technology Architecture and Microarchitecture.
Intel Technology. 2002; 6: 4-15.

30. C. Poppeliers. Estimating vertical stochastic scale parameters from
seismic reflection data: deconvolution with non-white reflectivity.
Geophysical Journal International. 2007; 68: 769-778.

31. C. Poppeliers, “Estimation of Vertical Continuous Stochastic
Parameters from Seismic Reflection Data,” Mathematical Geosciences.
2009; 417: 761-777.

32. C. Poppeliers and A. Levander. Estimation of vertical stochastic scale
parameters in the Earth’s crystalline crust from seismic reflection
data. Geophysical Research Letters. 2004; 31.

33. Graham RL. Bounds for Certain Multiprocessing Anomalies. The Bell
System Technical Journal. 1966; 9: 1563-1581. Darte Y. Robert, Vivien
F, Birkhauser . Scheduling and Automatic Parallelization, Boston.
2002; 5: 99-101.

34. M. Gondran and M. Minoux, Graphs and Algorithms, John Wiley &
Sons, 1984.

35. Merke A, Bellosa F. Balancing power consumption in multiprocessor
systems. Proceedings of the First ACM SIGOPS EuroSys. 2006; 4: 18-
21.

36. Tiwari V, Malik S, Wolfe A, Lee MT C. Instruction Level Power Analysis
and Optimization of Software. Ninth International Conference on VLSI
Design. 1996; 1-18.

37. Serway RA, Beichner RJ. Physics for Scientists and Engineers with
Modern Physics. Orlando, FL: Saunders College Publishing. 2000.

38. Enhanced Intel SpeedStep Technology for the Intel Pentium M
Processor. Intel. 2004.

39. Amdahl GM. Validity of the single processor approach to achieving
large scale. AFIPS spring joint computer conference. 1967.

40. Johnson DB. Finding All the Elementary Circuits of a Directed Graph.
Society for Industrial and Applied Mathematics Journal on Computing.
1975; 4: 77-84.

41. Rawshdeh T Do, S. Shi W. pTop: A Process-level Power Profiling
Tool. Proceedings of the Workshop on Power Aware Computing and
Systems. 2009.

Bonner D, Namin AS (2014) Measuring the Energy Efficiency Ratio of Parallelized Software Applications. Comput Sci Eng 1(1): 1002.

Cite this article

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4227974&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4203121%2F4227918%2F04227974.pdf%3Farnumber%3D4227974
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4227974&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4203121%2F4227918%2F04227974.pdf%3Farnumber%3D4227974
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4343825&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4343825
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4343825&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4343825
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4343825&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4343825
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6012831&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6012831
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6012831&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6012831
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6012831&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6012831
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6012831&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6012831
https://noggin.intel.com/intelpress/categories/books/energy-aware-computing
https://noggin.intel.com/intelpress/categories/books/energy-aware-computing
http://www.intel.in/content/dam/www/public/us/en/documents/articles/software-impact-energy-consumption-article.pdf
http://www.intel.in/content/dam/www/public/us/en/documents/articles/software-impact-energy-consumption-article.pdf
http://www.intel.in/content/dam/www/public/us/en/documents/articles/writing-energy-efficient-software-article.pdf
http://www.intel.in/content/dam/www/public/us/en/documents/articles/writing-energy-efficient-software-article.pdf
https://ece.uwaterloo.ca/~snaik/750/power.pdf
https://ece.uwaterloo.ca/~snaik/750/power.pdf
https://ece.uwaterloo.ca/~snaik/750/power.pdf
http://dl.acm.org/citation.cfm?id=76337
http://dl.acm.org/citation.cfm?id=76337
http://www.cs.sfu.ca/~fedorova/Teaching/CMPT886/Spring2007/papers/hyper-threading.pdf
http://www.cs.sfu.ca/~fedorova/Teaching/CMPT886/Spring2007/papers/hyper-threading.pdf
http://www.cs.sfu.ca/~fedorova/Teaching/CMPT886/Spring2007/papers/hyper-threading.pdf
http://gji.oxfordjournals.org/content/168/2/769.full.pdf
http://gji.oxfordjournals.org/content/168/2/769.full.pdf
http://gji.oxfordjournals.org/content/168/2/769.full.pdf
http://www.ingentaconnect.com/content/klu/11004/2009/00000041/00000007/00009205
http://www.ingentaconnect.com/content/klu/11004/2009/00000041/00000007/00009205
http://www.ingentaconnect.com/content/klu/11004/2009/00000041/00000007/00009205
http://onlinelibrary.wiley.com/doi/10.1029/2004GL019538/abstract
http://onlinelibrary.wiley.com/doi/10.1029/2004GL019538/abstract
http://onlinelibrary.wiley.com/doi/10.1029/2004GL019538/abstract
http://www.math.ucsd.edu/~ronspubs/66_04_multiprocessing.pdf
http://www.math.ucsd.edu/~ronspubs/66_04_multiprocessing.pdf
http://onlinelibrary.wiley.com/doi/10.1002/jos.109/abstract
http://onlinelibrary.wiley.com/doi/10.1002/jos.109/abstract
http://onlinelibrary.wiley.com/doi/10.1002/jos.109/abstract
https://os.ibds.kit.edu/mitarbeiter_754.php
https://os.ibds.kit.edu/mitarbeiter_754.php
https://os.ibds.kit.edu/mitarbeiter_754.php
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.4245&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.4245&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.4245&rep=rep1&type=pdf
http://download.intel.com/design/network/papers/30117401.pdf
http://download.intel.com/design/network/papers/30117401.pdf
http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
http://mancoosi.org/~abate/finding-all-elementary-circuits-directed-graph
http://mancoosi.org/~abate/finding-all-elementary-circuits-directed-graph
http://mancoosi.org/~abate/finding-all-elementary-circuits-directed-graph
http://www.sigops.org/sosp/sosp09/papers/hotpower_13_do.pdf
http://www.sigops.org/sosp/sosp09/papers/hotpower_13_do.pdf
http://www.sigops.org/sosp/sosp09/papers/hotpower_13_do.pdf

	Measuring the Energy Efficiency Ratio of Parallelized Software Applications
	Abstract
	Introduction
	Rising energy costs
	Political influence
	Smart grid and energy optimization
	Mobile energy demands
	The structure of the paper

	Related work
	Energy-Conscious Software Engineering
	Effects of nested loops
	Memory access vs. data caches
	Effects of multithreading

	Power Efficient Task Scheduling
	Cyclic and acyclic task graphs
	Potential graphs
	Energy aware task scheduling

	Modeling CPU Power Usage
	Energy ratio model
	CPU power usage

	Case Studies
	Subject applications
	Task schedulers
	Further observations

	Conclusion
	Future work

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Table 1
	Table 2
	Table 3
	Figure 11

