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INTRODUCTION

Microfluidics is the science and technology that involve the
study of behaviors of fluids, controlled fluid manipulations, and
the design of such devices or systems that can reliably perform
such tasks in microchannels with typical dimensions of tens to
hundreds of micrometers. For over two decades, applications of
microfluidics haven been extensively explored at the interface
of biology, chemistry, and engineering [1]. Microfluidics has
been broadly employed to miniaturize analytical methods and
chemical/biological processes, because it promises significant
increase in analysis speed, reduction in sample volume and
reagent consumption (10° to 10® L), and enhanced system
performance and functionality by integrating different
components onto individual devices [2,3]. These applications are
usually called micro total analysis systems (LTAS) [4] or lab on a
chip (LOC) [5].

The high surface-area-to-volume ratio of microfluidic
devices leads to enhanced heat and mass transfer and interfacial
phenomena that are not usually observed at macroscale, such
as the domination of surface forces instead of inertial and body
forces [6]. The fluid flow within a smooth-walled microchannel is
typically in the laminar region with a Reynolds number (Re) less
than 100 [7]. Mixing in microchannels is dominated by diffusion
but can be further enhanced by using active mechanisms, such as
electrokinetics and magnetohydrodynamics [8].

Another important feature of microfluidic devices is their
capability of integrating multiple steps onto one single device,
such as sample preparation, separation and analysis. By mass
production, it is possible to develop high-throughput processes
for production using microfluidic devices by parallelization
[9,10].

Fabrication of microfluidic devices

The final use of microfluidic devices dictates their choice
of materials and fabrication methods. The first generation of
microfluidic devices were fabricated with glass and silicon using
the well- established photolithographic techniques developed for
microelectromechnical systems (MEMS) and microelectronics
industry in the 80s. Depending on applications, new materials
were later introduced to fabricate microfluidic devices, such as
ceramic, steel, silicone, and teflon [11,12]. Polymers are now
popular construction materials to replace glass and silicon
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because of their lower cost and simpler fabrication process
without the need for nasty chemicals. Particularly for biological
applications, polydimethylsiloxane (PDMS) is the most popular
material in microfluidic device fabrication because of its many
advantages, such as optical transparency, biocompatibility,
elasticity, and a simple fabrication process (“soft lithography”)
[13-15]. More information on PDMS microfluidic devices is
available in several reviews and the references cited therein
[16-18].

Despite its many advantages, applications of PDMS are
significantly limited to aqueous reactions due to its very low
resistance to organic solvents, which are commonly used in
chemical synthesis. To circumvent this problem and yet keep
a simple fabrication process, different methods have been
developed to modify surface and bulk properties of PDMS [19],
but they are usually more complicated and still cannot solve the
problem effectively. Polymers based on the thiolene chemistry
have shown good chemical resistance, high mechanical strength,
and compatibility with the fabrication process of soft lithography
[20]. A series of commercially available, thiolene-based optical
adhesives, such as NOA 81, have been widely used to develop
microfluidic devices for applications involving organic solvents
[21-23]. An example of such devices is shown in (Figure 1).

Application in chemical engineering

Chemical engineering refers to an engineering branch
that applies physical/biological sciences, mathematics, and
economics to the development of production processes that
convert raw materials to valuable products on an industrial
scale. These processes are established by combining different
basic steps (unit operations), such as fermentation, filtration
and drying. With advances in science and engineering, new
products require processes to increase in both production scale
and complexity with integrated processing steps. For decades,
scaling up from benchtop via a pilot plant to a full blown one
has been the standard practice of the development of industrial-
scale production processes. However, this practice is now faced
with challenges from more stringent requirements, such as size
and cost reductions in equipment, lower energy consumption
and waste emission, and a safer operation environment, due to
the new trend of using sustainable production schemes in these
processes. To address these challenges, an approach called
“process intensification” has been adopted to develop improved
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Figure 1 Microfluidic device for the Paal-Knorr pyrrole synthesis. a) A device
fabricated with quartz slides and NOA 81 UV optical adhesive. b) Micrographs
of caffeine standards in the microchannel for calibrating the UV imaging system
for online reaction monitoring. From left to right, the concentrations are 0, 500,
and 1000 ppm, respectively. The microchannel became darker and darker due
to the increased absorbance at higher caffeine concentrations. The background
was completely dark because the stray light was absorbed by the microchannel
wall formed by the UV-curable adhesive, which served as a built-in optical slit.
The width and depth of the microchannel are 300 and 250 pm, respectively [39].

production processes. It focuses on developing new equipment
and methods that lead to more cost-effective and sustainable
processes [24-26].

Since the dawn of microfluidics in the 90s [27-29], it has
made significant progress as demonstrated by the piling up
research results. Microfluidics has found many biological
applications, such as gene/protein manipulation and analysis,
cell-based systems, biosensors, and drug discovery and delivery
[30,31]. Microfluidic devices have recently come into attention as
a powerful tool for process intensification because of their low
fabrication costs and reagent consumption, small form factors
for safe operation in a controlled environment, and capability of
integrate multiple basic steps onto one chip. A lot of work has been
directed to the development of microreactors for chemical and
biological processes. For downstream processing, microfluidic
devices have been used to develop systems for separation of cells
and purification of therapeutic compounds. The results so far are
very promising for miniaturized processes. More information on
process miniaturization can be found in the literature [32-35].

The outlook

For over two decades, microfluidics has made great strides
and has lead to commercialized products, such as Agilent
Technologies’ 2100 Bioanalyzer for biomolecule analysis, Caliper
Life Sciences’ LabChip systems for biomolecule analysis and
drug discovery, and FutureChemistry’s microreactor systems for
process optimization. Although microfluidic systems are still not
the mainstream equipment in production processes, they have
a promising future as indicated in reported research results so
far. Along with advances in materials and fabrication processes,
new discoveries of fluid behaviors at microscale might lead to
new reaction mechanisms that are not possible on conventional
macroscale systems.

Microfluidic systems are also potential for industry-scale
production because of their capability of parallelization. The
throughput of such systems can be significantly increased by
increasing the number of optimized microreactors (“scale
out”) instead of the conventional scale-up process that is more
expensive and carries more uncertainties [36]. Based on reports
in the literature and commercial products currently available,
it is foreseeable that there will be cost-effective, “plug and
play” microfluidic systems with customizable reaction modules
for continuous chemical production. This type of reactors are
particularly suitable for the production of high-added-value fine
chemicals and pharmaceuticals, because of their advantages
ranging from controlled process conditions to high production
rates and mass throughput, and thus faster time to the market
[37,38]. With microfluidics as an enabling technology, chemical
engineers will be able to easily tailor their reactors for desired
products and quantities by putting together various microreactor
modules, just as we do today to upgrade computer systems by
swapping plug and play components.
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