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INTRODUCTION
Microfluidics is the science and technology that involve the 

study of behaviors of fluids, controlled fluid manipulations, and 
the design of such devices or systems that can reliably perform 
such tasks in microchannels with typical dimensions of tens to 
hundreds of micrometers. For over two decades, applications of 
microfluidics haven been extensively explored at the interface 
of biology, chemistry, and engineering [1]. Microfluidics has 
been broadly employed to miniaturize analytical methods and 
chemical/biological processes, because it promises significant 
increase in analysis speed, reduction in sample volume and 
reagent consumption (10-9 to 10-18 L), and enhanced system 
performance and functionality by integrating different 
components onto individual devices [2,3]. These applications are 
usually called micro total analysis systems (µTAS) [4] or lab on a 
chip (LOC) [5].

The high surface-area-to-volume ratio of microfluidic 
devices leads to enhanced heat and mass transfer and interfacial 
phenomena that are not usually observed at macroscale, such 
as the domination of surface forces instead of inertial and body 
forces [6]. The fluid flow within a smooth-walled microchannel is 
typically in the laminar region with a Reynolds number (Re) less 
than 100 [7]. Mixing in microchannels is dominated by diffusion 
but can be further enhanced by using active mechanisms, such as 
electrokinetics and magnetohydrodynamics [8].

Another important feature of microfluidic devices is their 
capability of integrating multiple steps onto one single device, 
such as sample preparation, separation and analysis. By mass 
production, it is possible to develop high-throughput processes 
for production using microfluidic devices by parallelization 
[9,10].

Fabrication of microfluidic devices

The final use of microfluidic devices dictates their choice 
of materials and fabrication methods. The first generation of 
microfluidic devices were fabricated with glass and silicon using 
the well- established photolithographic techniques developed for 
microelectromechnical systems (MEMS) and microelectronics 
industry in the 80s. Depending on applications, new materials 
were later introduced to fabricate microfluidic devices, such as 
ceramic, steel, silicone, and teflon [11,12]. Polymers are now 
popular construction materials to replace glass and silicon 

because of their lower cost and simpler fabrication process 
without the need for nasty chemicals. Particularly for biological 
applications, polydimethylsiloxane (PDMS) is the most popular 
material in microfluidic device fabrication because of its many 
advantages, such as optical transparency, biocompatibility, 
elasticity, and a simple fabrication process (“soft lithography”) 
[13–15]. More information on PDMS microfluidic devices is 
available in several reviews and the references cited therein 
[16–18].

Despite its many advantages, applications of PDMS are 
significantly limited to aqueous reactions due to its very low 
resistance to organic solvents, which are commonly used in 
chemical synthesis. To circumvent this problem and yet keep 
a simple fabrication process, different methods have been 
developed to modify surface and bulk properties of PDMS [19], 
but they are usually more complicated and still cannot solve the 
problem effectively. Polymers based on the thiolene chemistry 
have shown good chemical resistance, high mechanical strength, 
and compatibility with the fabrication process of soft lithography 
[20]. A series of commercially available, thiolene-based optical 
adhesives, such as NOA 81, have been widely used to develop 
microfluidic devices for applications involving organic solvents 
[21–23]. An example of such devices is shown in (Figure 1).

Application in chemical engineering

Chemical engineering refers to an engineering branch 
that applies physical/biological sciences, mathematics, and 
economics to the development of production processes that 
convert raw materials to valuable products on an industrial 
scale. These processes are established by combining different 
basic steps (unit operations), such as fermentation, filtration 
and drying. With advances in science and engineering, new 
products require processes to increase in both production scale 
and complexity with integrated processing steps. For decades, 
scaling up from benchtop via a pilot plant to a full blown one 
has been the standard practice of the development of industrial-
scale production processes. However, this practice is now faced 
with challenges from more stringent requirements, such as size 
and cost reductions in equipment, lower energy consumption 
and waste emission, and a safer operation environment, due to 
the new trend of using sustainable production schemes in these 
processes. To address these challenges, an approach called 
“process intensification” has been adopted to develop improved 
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production processes. It focuses on developing new equipment 
and methods that lead to more cost-effective and sustainable 
processes [24–26].

Since the dawn of microfluidics in the 90s [27–29], it has 
made significant progress as demonstrated by the piling up 
research results. Microfluidics has found many biological 
applications, such as gene/protein manipulation and analysis, 
cell-based systems, biosensors, and drug discovery and delivery 
[30,31]. Microfluidic devices have recently come into attention as 
a powerful tool for process intensification because of their low 
fabrication costs and reagent consumption, small form factors 
for safe operation in a controlled environment, and capability of 
integrate multiple basic steps onto one chip. A lot of work has been 
directed to the development of microreactors for chemical and 
biological processes. For downstream processing, microfluidic 
devices have been used to develop systems for separation of cells 
and purification of therapeutic compounds. The results so far are 
very promising for miniaturized processes. More information on 
process miniaturization can be found in the literature [32–35].

The outlook

For over two decades, microfluidics has made great strides 
and has lead to commercialized products, such as Agilent 
Technologies’ 2100 Bioanalyzer for biomolecule analysis, Caliper 
Life Sciences’ LabChip systems for biomolecule analysis and 
drug discovery, and FutureChemistry’s microreactor systems for 
process optimization. Although microfluidic systems are still not 
the mainstream equipment in production processes, they have 
a promising future as indicated in reported research results so 
far. Along with advances in materials and fabrication processes, 
new discoveries of fluid behaviors at microscale might lead to 
new reaction mechanisms that are not possible on conventional 
macroscale systems.

Microfluidic systems are also potential for industry-scale 
production because of their capability of parallelization. The 
throughput of such systems can be significantly increased by 
increasing the number of optimized microreactors (“scale 
out”) instead of the conventional scale-up process that is more 
expensive and carries more uncertainties [36]. Based on reports 
in the literature and commercial products currently available, 
it is foreseeable that there will be cost-effective, “plug and 
play” microfluidic systems with customizable reaction modules 
for continuous chemical production. This type of reactors are 
particularly suitable for the production of high-added-value fine 
chemicals and pharmaceuticals, because of their advantages 
ranging from controlled process conditions to high production 
rates and mass throughput, and thus faster time to the market 
[37,38]. With microfluidics as an enabling technology, chemical 
engineers will be able to easily tailor their reactors for desired 
products and quantities by putting together various microreactor 
modules, just as we do today to upgrade computer systems by 
swapping plug and play components.
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